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Air Quality measurement devices

Low-cost sensorsRegulatory Instrumentation

60 to 100 euros10k to 200k euros

Electrochemical sensors

Laser sensors

CO, NO, NO2, O3

PM2.5

NDIR sensors CO2

MOx sensors CO, Total VOC



Fundamental principles of electrochemical sensors

» Contamination

» Temperature

» Humidity

» Sensor aging

» Cross-sensitivity

» Calibration
https://docs.smartcitizen.me/Components/sensors/air/Electrochemical%20Sensors/
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Low-cost sensor estimation errors

Estimation errors

National Observatory of Athens (Ambient)

2022-12-13 to 2022-12-26

Low-cost sensor: NO2-B43F

R2 = 0.6

ME = 7.54 ppb
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Low-cost sensor inter-unit consistency

Discrepancy between the same sensors

Kastritsi (Ambient)

2023-03-08 to 2023-03-12

Low-cost sensors: CO-B4

R2 = 0.85

ME = 85 ppb



Why low-cost sensors?

• Low-cost

• Multi-sensor networks (e.g. school classes)

• Though not ideal for accurate measurements, they can give us 

an estimation of the general conditions

• Are easily adjusted and calibrated to provide better 

estimations



ENSENSIA sensors

EC sensors

NO2-B43F

NO-B4

CO-B4

OX-B431

SO2-B4

VOC-B4

Laser sensor

PMS5003

Printed Circuit Board



ENSENSIA packaging



http://aqmmon.iceht.forth.gr/

Visualization web-based platform



Machine Learning methodology for low-
cost sensor calibration



Supervised Machine Learning

- Support Vector Machine

- Decision Trees

- Neural Networks

- Ensemble methods

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ml/



The Decision Tree algorithm

Features Ground Truth

NO

NO2

O3

CO

RH

NO2



The Random Forest algorithm



Random Forest weaknesses

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/



Why we chose Random Forest

Support Vector 
Machines

K-nearest 
Neighbors

Linear Models Neural Network 2D Convolutional 
Neural Networks

Long-Short Term 
Memory Networks

Better results with RF

LSTM performed similarly, but is a black-box and requires 

many resources to operate in real time. RF provides more 

explainable decisions and is lightweight



Field calibration experiment and results



Training Data

2021

Drosopoulou Sq.

Test Data

2022

Drosopoulou Sq.

Data Clean

Remove Zeros

Remove Negatives

Training - Validation Trained Model

Field calibration experiment

Average (1H)

• Location: Patra (center)

• Period: 2021-2022

• Time resolution: hourly average 

values

• Training Set: 2021

• Gas sensors for calibration: NO2, O3

• Test Set: 2022 (same location)
NO, CO, O3, 

NO2, PM2.5 , T

Either O3 or 

NO2

Features Ground truth



RF performance on the test data

R2: 0.22

ME(ppb): 9.4

MB (ppb): 7.3

nME: 0.67

R2: 0.86

ME(ppb): 3

MB (ppb): 1.7

nME: 0.3

Uncorrected Random Forest

Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368. 



RF feature importance

Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368. 



R2: 0.52

ME(ppb): 13

MB (ppb): -5.9

nME: 0.55

R2: 0.69

ME(ppb): 4.3

MB (ppb): 1.3

nME: 0.15

Uncorrected Random Forest

RF performance on the test data

Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368. 



Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368. 

RF feature importance



Conclusions

» Low-cost sensors exhibit errors and need calibration

» Utilizing all sensor readings besides the gas under examination for building the algorithm 

shows promising results

» Random Forest seems to perform well at least for NO2 and O3 sensors

» One-year training data are adequate for at least one year correction (on the same site)

» Machine Learning can help in field calibration of low-cost sensors



Work in progress



• EC Sensors Under Investigation:

» NO sensor

» CO sensor

» CO2 sensor

» VOC sensor

• General Calibration model

• Indoor applications

Work in progress
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O3 reading

NO, CO, NO2, 

PM2.5 , T

Corrected O3

Trained RF

Random Forest application example (Ozone)



Fundamental principles of laser sensors

Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. 

Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020

Particle Matter (PM2.5) sensor



- Low-level info for each sensor estimate (electrodes voltage)

- Enough CPU power to process sophisticated dynamic 

calibration / correction algorithms (Edge computing)

- Fully remote managed appliance

- Improved precision of measurements based on Machine 

Learning 

- Bundled with a friendly visualization web-based tool

ENSENSIΑ Properties



Fundamental principles of NDIR sensors



Fundamental principles of Mox sensors



Sensor IntegrationSensors
Factory 

Calibration

Chamber 

Calibration

Inter-unit 

consistency

Field 

Calibration

China, 

UK, 

USA

1st 

evaluation

2nd 

evaluation

3rd 

evaluation

Sensor evaluation and calibration

Machine 

Learning



Training Data

2021-2022 

Drosopoulou Sq.

2021 - 2022

Georgiou Sq.

1 month

Outside a school 

in Kato Kastritsi

2023

Drosopoulou Sq.

10 months

In the National

Observatory

Data Clean

Remove Zeros

Remove Negatives

Remove Outliers

Training - Validation Trained Model

Patra Athens

General calibration model
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