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Air Quality measurement devices
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Fundamental principles of electrochemical sensors
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https://docs.smartcitizen.me/Components/sensors/air/Electrochemical%20Sensors/



Low-cost sensor estimation errors

Estimation errors

National Observatory of Athens (Ambient)
2022-12-13 to 2022-12-26
Low-cost sensor: NO2-B43F
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Low-cost sensor inter-unit consistency

Discrepancy between the same sensors

Kastritsi (Ambient)
2023-03-08 to 2023-03-12
Low-cost sensors: CO-B4
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Why low-cost sensors?

* Low-cost
* Multi-sensor networks (e.g. school classes)

* Though not ideal for accurate measurements, they can give us
an estimation of the general conditions

* Are easily adjusted and calibrated to provide better
estimations



ENSENSIA sensors

EC sensors
NO2-B43F
NO-B4

Alphasense NO2-B43F

OX-B431
S02-B4
VOC-B4

Laser sensor
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ENSENSIA packaging
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Visualization web-based platform

|0 Air Quality
Monitoring

http://agmmon.iceht.forth.gr/
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Machine Learning methodology for low-
cost sensor calibration



Supervised Machine Learning
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https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ml/

- Support Vector Machine
- Decision Trees

- Neural Networks

-  Ensemble methods




The Decision Tree algorithm
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The Random Forest algorithm

EXAMPLES

Tree-1 Tree-2 Tree-n



Random Forest weaknesses

Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be true)

OUTLIERS ﬁ

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/



Why we chose Random Forest
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. ‘ . 4 feature maps 8 feature maps

. . 20 28x28 14x14 10x10 5x5
- - .

@ pt . ﬁ
- s
o y '_ ) g
/ ® o . ® 9 > e g A .
Support Vector K-nearest Linear Models Neural Network 2D Convolutional Long-Short Term
Machines Neighbors Neural Networks Memory Networks

Better results with RF

LSTM performed similarly, but is a black-box and requires
many resources to operate in real time. RF provides more
explainable decisions and is lightweight




Field calibration experiment and results



Field calibration experiment
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RF performance on the test data
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Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368.



RF feature importance
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Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368.



RF performance on the test data

Uncorrected Random Forest
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RF feature importance
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Apostolopoulos ID, Fouskas G, Pandis SN. Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere. 2023; 14(2):368.



Conclusions

» Low-cost sensors exhibit errors and need calibration

» Utilizing all sensor readings besides the gas under examination for building the algorithm
shows promising results

» Random Forest seems to perform well at least for NO, and O; sensors

» One-year training data are adequate for at least one year correction (on the same site)

» Machine Learning can help in field calibration of low-cost sensors



Work In progress



Work in progress

 EC Sensors Under Investigation:
» NO sensor

» CO sensor

» CO, sensor

» VOC sensor

General Calibration model

Indoor applications
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AIR QUALITY MONITORING STATION BY FORTH / ICE-HT

Random Forest application example (Ozone)
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Fundamental principles of laser sensors

‘g‘/ | \\u fff Tﬁ-,l

Our flow at fan

In flow at lower level

Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos.
Meas. Tech., 13, 5441-5458, https://doi.org/10.5194/amt-13-5441-2020, 2020



ENSENSIA Properties

- E] NSENSIA

AIR QUALITY MONITORING STATION BY FORTH / ICE-HT

Low-level info for each sensor estimate (electrodes voltage)

Enough CPU power to process sophisticated dynamic
calibration / correction algorithms (Edge computing)

Fully remote managed appliance

Improved precision of measurements based on Machine
Learning

Bundled with a friendly visualization web-based tool



Fundamental principles of NDIR sensors
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Fundamental principles of Mox sensors

Target gas Interferences
(CO) (H20)
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* Interaction of the VOC with the MOX (Combustion/chemical reaction driven by the heated membrane) results in
predictable modulation of the measured electrical resistance
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Sensor evaluation and calibration
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General calibration model
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