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Abstract
Retinal vein occlusion (RVO) is the second most common cause of vision loss after diabetic retinopathy. It
results from the occlusion of either the central retinal vein or one of its branches. Artificial intelligence (AI),
particularly deep learning (DL), has shown great potential in ophthalmology for disease assessment. This
review examined how AI has been applied to the diagnosis, segmentation, and treatment prediction of RVO
across different imaging modalities.

A comprehensive search of PubMed, Scopus, and Google Scholar up to June 19, 2024, identified 2,925
records, of which 23 met the inclusion criteria. Most studies (91%) were published after 2020, reflecting the
rapid growth of AI in this field. DL algorithms were used in 87% of studies, mainly convolutional neural
networks such as Residual Network, Densely Connected Convolutional Network, and Visual Geometry Group
Network. Classification was the most frequent task (78%), followed by segmentation (26%) and prediction
(17%). Color fundus photography was the most common imaging modality (57%), followed by fluorescein
angiography (26%), with fewer studies using optical coherence tomography or optical coherence
tomography angiography.

Internal validation metrics were generally high (accuracy 0.79-0.99, sensitivity 0.67-1.00, specificity 0.80-
1.00), but performance declined in external validation (accuracy 0.39-0.98, sensitivity 0.38-0.93), indicating
limited generalizability. Segmentation models achieved Dice coefficients between 0.82 and 0.94. Only 30%
of studies used external datasets, and one performed clinical validation. Explainable AI techniques were
applied in 39% of studies, mostly Grad-CAM, though often in a qualitative manner.

Overall, AI systems demonstrate strong potential for assisting in RVO diagnosis and management, but
challenges remain. Limited dataset diversity, lack of multimodal fusion, and minimal clinical validation
restrict real-world applicability. Future research should prioritize multicenter datasets, standardized
evaluation, interpretability, and ethical governance to enable safe and effective integration of AI tools in
ophthalmic care.

Categories: Healthcare Technology, Ophthalmology
Keywords: artificial intelligence, deep learning, diagnosis, ophthalmology, prediction, retinal imaging, retinal vein
occlusion, segmentation

Introduction And Background
Retinal vein occlusion (RVO) is a vascular retinal disease caused by either central retinal vein occlusion
(CRVO) or branch retinal vein occlusion (BRVO), which can result in vision impairment and long-term
complications. RVO, including central (CRVO) and branch (BRVO) types, is a major cause of visual loss,
particularly in patients with vascular comorbidities such as hypertension and diabetes. RVO is the second
most common cause of vision loss after diabetic retinopathy, affecting an estimated 16.4 million people, the
majority of whom have BRVO. No significant sex differences in incidence have been reported [1].

Artificial intelligence (AI) has become increasingly integrated into ophthalmic research, offering new
possibilities for the detection, segmentation, and prediction of retinal diseases such as RVO. Deep learning
(DL), a subset of machine learning (ML), has shown remarkable potential in analyzing medical images by
automatically identifying complex patterns that may not be evident to clinicians. Among DL architectures,
convolutional neural networks (CNNs) are the most widely used for image-based tasks. These models can
efficiently extract spatial and structural features from retinal images, enabling automated identification of
vascular changes, hemorrhages, and macular edema associated with RVO [2-5].

In ophthalmology, CNN-based systems have been successfully applied across imaging modalities, including
fundus photography, optical coherence tomography (OCT), and fluorescein angiography (FA), facilitating
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diagnostic classification, lesion segmentation, and prognostic modeling. Transfer learning and model fine-
tuning have further improved performance, allowing adaptation of pretrained networks to RVO-specific
datasets even when data availability is limited [6-10].

Despite these advances, challenges remain regarding model interpretability, generalizability, and the need
for external validation across diverse populations and imaging devices. Furthermore, ethical and regulatory
considerations continue to shape the clinical translation of AI models [11-13].

The purpose of this review is to examine how AI has been utilized in the diagnosis (classification),
segmentation, and prediction of RVO, highlighting current applications, performance, and existing
limitations across various imaging modalities.

Review
Materials and methods
Search Strategy

A comprehensive literature search was conducted in the PubMed, Elsevier, and Google Scholar databases up
to June 19, 2024. The following Boolean search string was used in PubMed and adapted as appropriate for the
other databases: (“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural networks”
OR “convolutional neural networks” OR “automated diagnosis” OR “automated screening”) AND (“retinal
vein occlusion” OR “branch retinal vein occlusion” OR “central retinal vein occlusion” OR “RVO” OR “BRVO”
OR “CRVO”).

Only English-language articles were included, and no geographic restrictions were applied. Reference lists
of the included articles were manually screened to identify additional eligible studies. All retrieved records
were imported into Mendeley Reference Manager (Mendeley Ltd., London, United Kingdom), where
duplicates were removed and titles/abstracts were screened for relevance. Two
independent authors (E.M. and V.M.) screened all titles and abstracts for eligibility, with discrepancies
resolved by consensus after discussion. Full-text screening was also performed independently by the
same authors, and any disagreements were resolved by a third author (I.D.A).

Eligibility Criteria

Studies were included in this review if they applied AI methods, including ML or DL, to diagnose, classify,
segment, detect, or predict RVO. Both CRVO and BRVO subtypes were eligible. Studies had to use
ophthalmic imaging techniques such as fundus photography, OCT, OCT angiography (OCTA), FA, or other
similar retinal imaging modalities. Only studies that used a total dataset of at least 100 images and reported
quantitative AI performance measures (for example, accuracy, sensitivity, or specificity) were included.
Furthermore, only full-text articles published in English were considered.

Studies were excluded if they did not involve RVO cases, did not apply AI techniques, or used datasets with
fewer than 100 images. Studies were also excluded if they lacked quantitative performance metrics or
statistical evaluation of AI results, involved nonhuman subjects, or were published as reviews, case reports,
conference abstracts, editorials, or presentations. Articles without an accessible full text or not published in
English were also excluded from the review.

Data Extraction

Data were extracted using a predefined, customized Microsoft Excel spreadsheet (Microsoft Corporation,
Redmond, WA), which included the following fields: author, year, disease type, dataset (name and
origin), imaging modality, total images, AI task, AI type, AI architecture, explainable AI (XAI)
technique, external validation, clinical validation, AI model performance (internal), AI model performance
(external), and AI model performance (clinical). Data extraction was performed independently by
two authors (E.M. and V.M.) to ensure accuracy and consistency. Any discrepancies or uncertainties were
discussed and resolved by consensus, with arbitration by a third author (I.D.A.) when required. Extracted
data were reviewed collaboratively before synthesis to ensure completeness and consistency.

Results
Study Selection

The initial literature search yielded 2,925 studies. A detailed visual representation of the study selection
process is provided in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
flowchart (Figure 1) [14]. After duplicate removal in Mendeley, 2,789 studies remained for title and abstract
screening, leading to the exclusion of 2,613 records, mainly due to an ineligible population (e.g., studies
conducted in individuals without RVO) or an ineligible intervention (e.g., RVO analysis without the use of AI
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tools). A total of 176 full-text articles were assessed for eligibility. Of these, 153 were excluded for the
following reasons: no use of AI methods (n = 89), full text not retrievable (n = 21), or datasets containing
fewer than 100 images (n = 43). Finally, 23 studies met all eligibility criteria and were included in the
qualitative synthesis [15-37].

FIGURE 1: PRISMA 2020 flowchart
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Characteristics of Included Studies

Across the included studies (Figure 2 and Tables 1, 2), AI was used primarily for classification (78%),
followed by segmentation (26%) and treatment prediction (17%). Some studies addressed multiple tasks:
26% examined both classification and segmentation, and one study covered classification and prediction
[23]. No studies have investigated segmentation and prediction together, nor have any examined
classification, segmentation, and prediction jointly.
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FIGURE 2: Overview of artificial intelligence applications in retinal vein
occlusion studies. (a) Proportion of studies that used XAI vs. those
without XAI. (b) Distribution of traditional ML and DL approaches.
(c) Proportion of studies using internal, external, or clinical validation.
(d) Distribution of classification, segmentation, and prediction AI tasks.
(e) Imaging modalities used across studies include OCT, OCTA, UWF-
CFP, CFP, FA, and multimodal combinations
XAI: explainable artificial intelligence, ML: machine learning, DL: deep learning, OCT: optical coherence
tomography, OCTA: optical coherence tomography angiography, UWF-CFP: ultrawide-field color fundus
photograph, CFP: color fundus photograph, FA: fluorescein angiography

Study
Disease

type
Dataset

Imaging

modality

Total

images
AI task

AI

type
ΑΙ architecture XAI

External

validation

Clinical

validation

Abitbol et

al. [15]

RVO; DR;

SCR;

healthy

Creteil University Hospital, France (PR)
UWF-

CFP
224 Classification DL DenseNet121

Smoothed

saliency

maps;

Grad-CAM

No No

Beeche et

al. [16]

CRVO;

BRVO

Public datasets via GitHub (PU); STARE, USA

(PU)
CFP 7,062 Classification DL

NUN; ResNet; DenseNet;

Inception-v3

GVM;

CAM

STARE PU

dataset (397

CFP

images)

No

Chen et

al. [17]

BRVO;

CRVO;

other

diseases

Tianjin Medical University EyeHospital, China (PR);

Kaggle Diabetic Retinopathy Detection dataset,

China (PU)

CFP 8,600

Classification;

segmentation

(lesion)

DL

Inception-v3; DenseNet-

121; Resnet-50;

SEResNext-50 (class.)

FCN-32s; DeepLab-v3;

DANet; Lesion-Net-8s

(segm.)

N/R

PR dataset

(224 CFP

images)

No

Dong et

al. [18]

RVO; 9

other

retinal

diseases

Beijing Tongren Hospital, China (PR); iKang Health

Care Centers, China (PR); Beijing Eye Study

dataset, China (PR); Kailuan Eye Study dataset,

China (PR)

CFP 328,760 Classification DL RAIDS Grad-CAM

Beijing Eye

Study and

Kailuan Eye

Study PR

datasets

(10,084 CFP

images)

No

Gallardo

et al. [19]

nAMD;

RVO;

DME

University Hospital of Bern, Switzerland (PR) OCT
710

(eyes)

Prediction (anti-

VEGF treatment

need)

ML Random Forest
Feature

importance
No No
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Gu et al.

[20]

RVO; 13

other

retinal

diseases

6 primary healthcare centers in Shanghai and

Xinjiang, China (PR)
 9,590 Classification DL

Airdoc Retinal Artificial

System (ARAS) -

Inception-ResNet-V2;

Yolo-V3; EfficientNet-B3

N/R No Yes

Huang et

al. [21]

BRVO;

CRVO

Second Affiliated Hospital of Zhejiang University,

China (PR); Second Affiliated Hospital of Xi’an

Jiaotong, China (PR); Poland dataset, Poland

(PR); Linfen dataset, China (PR); Ningbo dataset,

China (PR)

FA 4,028 Classification DL
VGG-19; ResNet-50;

Inception-v3
N/R

Poland,

Linfenand

Ningbo PR

datasets

(230 FA

images)

No

Ji et al.

[22]

CRVO;

BRVO;

MRVO;

healthy

Affiliated Eye Hospital of Nanjing Medical

University, China (PR); Shenzhen Eye Hospital of

Jinan University, China (PR)

CFP 914 Classification DL Swin Transformer N/R No No

Kang et

al. [23]

BRVO;

CRVO;

DME;

nAMD;

mCNV

Chang Gung Memorial Hospital, Taiwan (PR);

Linkou Medical Center, Taiwan (PR); Taipei and

Keelung branches, Taiwan (PR)

CFP;

OCT;

FA/ICG

35,355

Classification;

prediction (anti-

VEGF treatment

need)

DL

EfficientNetB4 (class.,

pred.); Cascade R-CNN

(ROI extraction)

Grad-CAM No No

Lin et al.

[24]

RVO; 13

retinal

diseases

51 clinical settings across China (PR) CFP 260,830 Classification DL IneptionResnetV2 N/R

PR dataset

from 35

different

clinical

settings

(18,136 CFP

images)

No

Masayoshi

et al. [25]
BRVO Keio University Hospital of Tokyo, Japan (PR)

CFP; FA;

synthetic

FA

403 pairs

(CFP+FA)

Segmentation

(nonperfusion

area)

DL GAN; U-Net N/R No No

Miao et al.

[26]
BRVO

First Affiliated Hospital of Nanjing Medical

University, China (PR)
CFP 274

Classification

(need for laser

treatment);

segmentation

(nonperfusion

area)

DL

VGG (class., laser

treatment need); U-Net

(segm., NPA detection)

N/R No No

Nagasato

et al. [27]

BRVO;

healthy

Tsukazaki Hospital, Japan (PR); Tokushima

University Hospital, Japan (PR)

UWF-

CFP
466 Classification DL VGG-16; SVM Grad-CAM No No

Tang et al.

[28]
RVO Shanxi Eye Hospital, China (PR) FA 161

Segmentation

(nonperfusion

area)

DL
CE-Net; CE-Deform-Net;

DeepLabv3+; U-Net
N/R No No

Wan et al.

[29]

BRVO;

CRVO;

MRVO;

healthy

Shenzhen Eye Hospital, China (PR) CFP 805 Classification DL

Swin Transformer; VGG-

16; VGG-19; MobileNet-

v2; ResNet-18; ResNet-

50; WP-CNN-105;

DenseNet-121

Grad-CAM No No

Wong et

al. [30]

BRVO;

CRVO;

DR;

healthy

RFMiD, India (PU); Kaggle dataset, China (PU) CFP 875 Classification ML Google's AutoML N/R

Kaggle PU

dataset (210

CFP

images)

No

Xu et al.

[31]

BRVO;

CRVO

Department of Ophthalmology, Qilu Hospital,

Shandong University, China (PR)
OCT 1,166

Prediction (of

short-term anti-

VEGF response

via synthetic

OCT generation)

DL GAN N/R No No

Xu et al.

[32]

CRVO;

BRVO;

MBRVO;

healthy

Eye Hospital affiliated with Nanjing Medical

University, China (PR)
CFP 501 Classification DL

ResNet 18; ResNet

18+SE; ResNet

18+CBAM; ResNet

18+CA

N/R No No
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Yeung et

al. [33]

BRVO;

healthy

Chang Gung Memorial Hospital, Keelung, Taiwan

(PR)
OCTA

120

(eyes)

Classification

(macular

ischemia

severity);

segmentation

DL U-Net (class., segm.) N/R No No

Zhang et

al. [34]

BRVO;

CRVO
Shanxi Eye Hospital, China (PR) CFP 297 Classification DL

VGG-CAM; ResNet-34;

Inception-v3; MobileNet
Grad-CAM No No

Zhang et

al. [35]

BRVO;

healthy
Yancheng Third People's Hospital, China (PR) FA 670 Classification ML HLBP + SVM N/R No No

Zhang et

al. [36]
RVO; ME

The Affiliated Eye Hospital, Nanjing Medical

University, China (PR)
OCTA 2,800

Prediction (of

RVO-ME

recurrence after

anti-VEGF

treatment)

DL
VGG-19; Resnet-50;

GoogLeNet; Inception-v3
N/R No No

Zhao et al.

[37]

BRVO;

CRVO;

DR; retinal

vasculitis;

healthy

Zhongsan Ophthalmic Center, China (PR); SEH,

China (PR); FSPH, China (PR)
FA 24,316

Classification;

segmentation
DL

ResNet152; U-Net-

VGG16 (Ai-Doctor)
Heatmaps

SEH and

FSPH PR

datasets

(3,996 FA

images)

No

TABLE 1: Study and model characteristics
AI: artificial intelligence, anti-VEGF: antivascular endothelial growth factor, BRVO: branch retinal vein occlusion, CAM: class activation mapping, CFP:
color fundus photography, class.: classification, CRVO: central retinal vein occlusion, DL: deep learning, DME: diabetic macular edema, DR: diabetic
retinopathy, FA: fluorescein angiography, FSPH: Foshan Second People's Hospital, GAN: generative adversarial network, Grad-CAM: gradient-weighted
class activation mapping, GVM: graph visualization map, HLBP: hierarchical local binary pattern, ICG: indocyanine green angiography, MBRVO: macular
branch retinal vein occlusion, mCNV: myopic choroidal neovascularization, ME: macular edema, ML: machine learning, MRVO: macular retinal vein
occlusion, nAMD: neovascular age-related macular degeneration, NUN: neural understanding network, OCT: optical coherence tomography, OCTA:
optical coherence tomography angiography, PR: private, pred.: prediction, PU: public, RVO: retinal vein occlusion, SCR: sickle cell retinopathy, segm.:
segmentation, SEH: Shenzen Eye Hospital, SVM: support vector machine, UWF-CFP: ultra-wide-field color fundus photography, XAI: explainable artificial
intelligence

Study Performance (internal) Performance (external)
Performance
(clinical)

Abitbol et
al. [15]

Accuracy: 88.4%; sensitivity: 78.7%; specificity: 91.0%;
precision: 77.2%; F1 score: 83.3%; AUC: 91.2%

- -

Beeche et
al. [16]

NUN (best model): accuracy: 0.911 (±0.007);
sensitivity: 0.983 (±0.010); specificity: 0.803 (±0.005);
precision: 0.881 (±(0.003); F1 score: 0.911 (±0.007);
AUC (micro): 0.973 (±0.003); AUC (macro): 0.975
(±0.003); AUC (BRVO): 0.961 (±0.010); AUC (CRVO):
0.967 (±0.006)

NUN without transfer learning: AUC (micro):
0.900 (±0.018); AUC (macro): 0.897 (±0.021);
AUC (BRVO): 0.934 (±0.013); AUC (CRVO):
0.898 (±0.057)

-

Chen et
al. [17]

Inception-v3 (best model): BRVO: sensitivity: 1.00
(0.94-1.00); specificity: 1.00 (1.00-1.00); F1 score:
1.00; AUC: 1.00 (1.00-1.00); CRVO: sensitivity: 0.94
(0.81-0.99); specificity: 1.00 (0.99-1.00); F1 score:
0.97; AUC: 1.00 (0.99-1.00); Mean: sensitivity: 0.93;
specificity: 0.99; F1 score: 0.95; AUC: 0.99

Inception-v3 (best model): BRVO: sensitivity:
0.80 (0.52-0.96); specificity: 0.98 (0.95-0.99); F1
score: 0.88; AUC: 0.95 (0.87-1.03); CRVO:
sensitivity: 0.92 (0.62-1.00); specificity: 0.98
(0.95-0.99); F1 score: 0.95; AUC: 0.99 (0.94-
1.03); Mean: sensitivity: 0.81; specificity: 0.90;
F1 score: 0.85; AUC: 0.91

-

Dong et
al. [18]

Accuracy (ALL): 95.3%-99.9%; accuracy (RVO): 0.974
(0.973-0.975); sensitivity (ALL): 89.8% (95% CI, 89.5%-
90.1%)

Sensitivity (ALL-RAIDS): 91.7% (95% CI:
90.6%-92.8%); sensitivity (certified
ophthalmologists): 83.7%; sensitivity (junior
retinal specialists): 86.4%; sensitivity (senior
retinal specialists): 88.5%

-

Gallardo
et al. [19]

AUC (RVO/DME): 0.76 (for low demand); AUC
(RVO/DME): 0.78 (for high demand)

- -

RVO: accuracy:
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Gu et al.
[20]

- -

0.99 (95% CI:
0.99-1.00);
sensitivity: 0.79
(95% CI: 0.67-
0.89); specificity:
1.00 (95% CI:
0.99-1.00); PPV:
0.82 (95% CI:
0.70-0.91); NPV:
1.00 (95% CI:
0.99-1.00)

Huang et
al. [21]

Inception-v3 diagnosis (best model): accuracy: 0.8922;
recall: 0.8826; precision: 0.8826; F1 score: 0.8849

Inception-v3 Diagnosis (best model): Poland
dataset: accuracy: 0.3895; recall: 0.3849;
precision: 0.2853; F1 score: 0.2992; Linfen
dataset: accuracy: 0.8462; recall: 0.6755;
precision: 0.6883; F1 score: 0.6804; Ningbo
dataset: accuracy: 0.8280; recall: 0.8250;
Precision: 0.8041; F1 score: 0.7951

-

Ji et al.
[22]

BRVO: accuracy: 0.957; sensitivity: 0.917; specificity:
0.982; precision: 0.971; F1 score: 0.943; CRVO:
accuracy: 0.978; sensitivity: 0.955; specificity: 0.986;
precision: 0.955; F1 score: 0.955; MRVO: accuracy:
0.978; sensitivity: 1.000; specificity 0.976; precision:
0.800; F1 score: 0.887; Normal: accuracy: 1.000;
sensitivity: 1.000; specificity: 1.000; precision: 1.000;
F1 score: 1.000

- -

Kang et al.
[23]

Classification (diagnosis): BRVO: accuracy: 0.977;
sensitivity: 0.690; specificity: 0.997; CRVO: accuracy:
0.977; sensitivity: 0.769; specificity: 0.983; Prediction
(need for anti-VEGF treatment): accuracy: 0.930;
sensitivity: 0.904; specificity: 0.945; Control group (no
treatment needed): accuracy: 0.984; sensitivity: 0.971;
specificity: 0.985

- -

Lin et al.
[24]

RVO: sensitivity: 0.945; specificity: 0.905; AUC: 0.962
(0.959-0.966)

RVO (tertiary hospital set): AUC: 0.948 (95% CI:
0.940-0.956)

-

Masayoshi
et al. [25]

Dice score: 0.82 - -

Miao et al.
[26]

Classification: accuracy: 0.79 ± 0.02; recall (sensitivity):
0.75 ± 0.08; precision: 0.80 ± 0.07; AUC: 0.82 ± 0.03;
segmentation: accuracy: 0.89 ± 0.02; recall: 0.74 ±
0.05; precision: 0.87 ± 0.02; F1-score: 0.80 ± 0.03;
AUC: 0.96 ± 0.02

- -

Nagasato
et al. [27]

VGG-16: sensitivity: 94.0% (93.8%-98.8%); specificity:
97.0% (89.7%-96.4%); PPV: 96.5% (94.3%-98.7%);
NPV: 93.2% (90.5%-96%); AUC: 0.976 (0.960-0.993)

- -

Tang et al.
[28]

Dice (CE-Net): 0.928 ± 0.064 (with CLAHE); Dice (CE-
deform-Net): 0.928 ± 0.066 (with CLAHE)

- -

Wan et al.
[29]

Swin Transformer (best model): BRVO: accuracy:
98.88 ± 0.080; sensitivity: 98.55 ± 0.056; specificity:
99.04 ± 0.041; precision: 98.56 ± 0.066; F1: 96.56 ±
0.068; CRVO: accuracy: 99.98 ± 0.015; sensitivity:
99.97 ± 0.016; specificity: 99.99 ± 0.006; precision:
99.73 ± 0.062; F1: 99.99 ± 0.006; MRVO: accuracy:
94.49 ± 0.094; sensitivity: 93.89 ± 0.095; specificity:
99.98 ± 0.017; precision: 99.97 ± 0.026; F1: 96.81 ±
0.084; Normal accuracy: 99.42 ± 0.012; sensitivity:
99.99 ± 0.0001; specificity: 99.12 ± 0.031; precision:
98.19 ± 0.065; F1: 99.19 ± 0.085

- -

BRVO: accuracy: 96.51%; sensitivity: 71.43%; recall:
BRVO: accuracy: 96.81%; sensitivity: 90.91%;
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Wong et
al. [30]

71.4%; specificity: 98.73%; precision: 83.3%; CRVO:
accuracy: 98.81%; sensitivity: 66.67%; recall: 66.7%;
specificity: 100%; precision: 100%

recall: 90.9%; specificity: 98.61%; precision:
95.2%; F1: 0.93; CRVO: accuracy: 98.38%;
sensitivity: 95.45%; recall: 95.5%; specificity:
98.77%; precision: 91.3%

-

Xu et al.
[31]

MAE (overall): 26.33 ± 15.81; MAE (BRVO
classification): 24.21 ± 14.82; MAE (CRVO
classification): 28.55 ± 17.32

- -

Xu et al.
[32]

ResNet 18+CA (best model): BRVO: accuracy: 0.9464;
sensitivity: 0.8333; specificity: 0.9091; F1: 0.8696;
CRVO: accuracy: 0.9821; sensitivity: 1.000; specificity:
0.8750; F1: 0.9333; MRVO: accuracy: 0.9643;
sensitivity: 0.8333; specificity: 0.8333; F1: 0.8333

- -

Yeung et
al. [33]

Accuracy: 0.865; sensitivity: 0.757; specificity: 0.916;
precision: 0.813; F1: 0.781

- -

Zhang et
al. [34]

VGG-CAM (best model): BRVO: sensitivity: 0.94;
specificity: 0.99; AUC: 0.99; Kappa: 0.97; CRVO:
sensitivity: 0.99; specificity: 0.96; AUC: 0.99; Kappa:
0.88

- -

Zhang et
al. [35]

Accuracy (mean): 96.1% - -

Zhang et
al. [36]

VGG-19 (best model): DTL: accuracy: 0.913; sensitivity
(recall): 0.922; specificity: 0.902; precision: 0.922; F1:
0.922; AUC: 0.968 (95% CI: 0.943-0.994); Fusion:
accuracy: 0.935; sensitivity (recall): 0.935; specificity:
0.934; precision: 0.947; F1: 0.941; AUC: 0.972 (95%
CI: 0.946-0.997)

- -

Zhao et al.
[37]

BRVO classification (ZOC): accuracy: 0.932 (0.915-
0.949); recall: 0.930 (0.912-0.948); precision: 0.970
(0.958-0.982); AUC: 0.985 (0.977-0.993); BRVO
segmentation (ZOC): DSC: 94.4 (90.4-98.4); IoU: 89.4
(84.0-94.8); F1: 92.0 (87.3-96.7); CRVO segmentation
(ZOC): DSC: 89.2 (83.4-95.0); IoU: 80.6 (73.2-88.0);
F1: 84.0 (77.2-90.8); KAII (BRVO - laser therapy
decision threshold): sensitivity: 86.24%; specificity:
93.83%; AUC: 0.955 (0.933-0.976)

BRVO classification (SEH): accuracy: 0.921
(0.888-0.954); recall: 0.920 (0.887-0.953);
precision: 0.950 (0.923-0.977); AUC: 0.963
(0.940-0.986); BRVO classification (FSPH):
accuracy: 0.933 (0.909-0.957); recall: 0.930
(0.906-0.954); precision: 0.960 (0.942-0.978);
AUC: 0.972 (0.956-0.988); BRVO segmentation
(SEH): DSC: 92.5 (87.9-97.1); IoU: 86.0 (80.0-
92.0); F1: 89.4 (84.0-94.8); BRVO segmentation
(FSPH): DSC: 91.7 (86.9-96.5); IoU: 84.7 (78.4-
91.0); F1: 88.3 (82.7-93.9)

-

TABLE 2: AI performance metrics
AI: artificial intelligence, anti-VEGF: anti-vascular endothelial growth factor, AUC: area under the curve, BRVO: branch retinal vein occlusion, CLAHE:
contrast limited adaptive histogram equalization, CRVO: central retinal vein occlusion, DSC: Dice similarity coefficient, DTL: deep transfer learning, FSPH:
Foshan Second People's Hospital, MAE: mean absolute error, IoU: Intersection over Union, MRVO: macular retinal vein occlusion, NPV: negative
predictive value, NUN: neural understanding network, PPV: positive predictive value, RVO: retinal vein occlusion, SEH: Shenzen Eye Hospital, ZOC:
Zhongsan Ophthalmic Center

We observed that most studies (57%) used color fundus photographs (CFPs) or ultrawide-field color fundus
photographs (UWF-CFPs) (9%) as the modality of choice, due to the fact that it is a noninvasive,
reproducible, and easy-to-conduct examination. Twenty-six percent of the studies used FA as the imaging
modality of choice. Two studies used OCT images [19,31], two studies used OCTA [33,36], and two
studies employed a combination of modalities (CFP+OCT+FA/indocyanine green angiography and CFP+FA)
[23,25]. Most studies that applied AI for the classification of RVO used CFP as the preferred modality. FA was
mainly used in studies focusing on the segmentation of areas of nonperfusion and treatment prediction,
while OCT and OCTA were used exclusively in studies on treatment prediction.

The number of images varied widely across studies, with dataset sizes ranging from 161 to 328,760
images. Since the various datasets differ in type and contain various data formats, it is impossible to make
absolute numerical comparisons, only broad stratifications by size. The various dataset sizes used in the
studies also fluctuated in type or data format. Only 30% of the studies used external validation datasets to
test their AI algorithms, and one study included clinical validation datasets [20].
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The vast majority of the studies (87%) used DL Algorithms, while only three used ML
Algorithms [19,30,35]. Seventy-eight percent of studies used some type of CNN (one or more), mostly a
subtype of Residual Network (ResNet). Two studies implemented Swin Transformer (Microsoft Research
Asia, Beijing, China) [22,29], one of which used Swin Transformer in combination with CNN algorithms [29].
Two studies also used the support vector machine (SVM) algorithm [27,35], one in combination with a CNN
[27] and one in combination with a hierarchical local binary pattern [35]. One study used an automated ML
algorithm from Google, but did not specify the algorithm type [30].

More specifically, the most frequent AI algorithms used for classification purposes were Densely Connected
Convolutional Network (DenseNet), ResNet, and Visual Geometry Group Network (VGG). These were used by
67% (12 out of 18) of classification studies, while from the six remaining studies, one used NUN [16], one
used U-Net [33], two used Swin Transformer [22,29], and two used SVM algorithms [27,35]. Concerning
segmentation, the vast majority (five out of six studies) used the U-Net AI algorithm either alone or in
combination with other algorithms [25,26,28,33,37]. For predicting RVO treatment, each study used its own
AI algorithms. Out of four studies [19,23,31,36], only one used more than one algorithm for prediction
purposes [36].

Concerning internal validation metrics, accuracy ranged from 0.79 to 0.99, sensitivity from 0.67 to 1.00,
specificity from 0.80 to 1.00, precision from 0.77 to 1.00, area under the curve (AUC) from 0.76 to 1.00, and
F1 score from 0.78 to 1.00. Concerning external validation metrics, accuracy ranged from 0.39 to 0.98,
sensitivity from 0.38 to approximately 0.93, specificity from 0.90 to 0.98, precision from 0.29 to
0.96, AUC from 0.90 to 0.99, and F1 scores from about 0.30 to 0.89. Multisite external testing showed
heterogeneous performance across cohorts, for example, the Poland, Linfen, and Ningbo sets in Huang et
al.'s study [21] and the cross-hospital evaluations in Zhao et al.'s study [37].

Segmentation studies reported Dice similarity coefficients from approximately 0.82-0.94 and Intersection
over Union from approximately 0.81-0.89, while prediction studies used mean absolute error (MAE) for
continuous targets and AUC or accuracy for categorical targets such as treatment need or recurrence. Among
the four prediction studies, three reported AUC or accuracy [19,23,36], and one reported MAE [31].

Thirty-nine percent of studies used comprehensive XAI techniques, most of which (seven studies) used
Grad-CAM [15,16,18,23,27,29,34]. From the studies that performed prediction tasks, two applied XAI
techniques: one used Grad-CAM [23] and the other employed feature importance [19].

Discussion
To the best of our knowledge, this is the first review concerning the use of AI for the
diagnosis (classification), segmentation, and treatment prediction of RVO. Based on the statistical results
provided by the researchers, the majority of the studies (91%) were conducted after 2020. Most studies
evaluating the classification/diagnosis of RVO with AI models used color fundus images as input data,
whereas most studies evaluating RVO treatment used OCT images as input data. DL algorithms were used in
most studies, with AI performance values varying between different studies.

In studies that included both internal and external validation, the internal testing metrics were consistently
higher than those obtained from external or real-time validation. Specifically, for the AUC metric, the mean
value for internal validation was 3.75% higher. The mean difference in sensitivity was 9%, while specificity
showed the smallest mean difference at 1.73%, both favoring internal testing. In one study [30], the external
testing sensitivity was reported to be significantly higher than the internal testing value (25.9% higher);
however, the overall mean still indicated superior internal testing metrics. The mean differences for accuracy
and precision were 10.08% and 16.31%, respectively, with precision showing the largest difference between
internal and external validation. The mean difference for the F1 score was 13.96%.

In the study by Huang et al. [21], a substantial discrepancy was observed between internal and external
validation metrics, attributed to one external validation group reporting very low results. The authors did
not provide an explanation for this finding. Studies employing Swin Transformer models reported the best
diagnostic and classification performance for RVO based on internal validation metrics [22,29]. However,
these results cannot be safely compared with other studies, as they did not include external validation data.
Overall, all models demonstrated lower specificity than their near-perfect sensitivity.

These patterns are consistent with a domain shift that arises from differences in camera vendors, acquisition
protocols, case mix, disease prevalence, and image quality. Internal testing, therefore, risks overestimating
real-world performance. Practical mitigation includes multisite curation with balanced representation of
devices and populations, vendor-stratified reporting, color and illumination harmonization, augmentation
that reflects acquisition variability, and prespecified external evaluations with patient-level splits. Reporting
per-site confusion matrices and explicit internal to external deltas would make transportability easier to
judge.

Additionally, complexity occurs with the use of different statistical analysis models in comparing results.
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Also, image-capturing methods, image quality, and analysis techniques differ across various studies,
resulting in some inconsistencies in findings.

A few studies leveraged UWF-CFP imaging for classification, which is attractive because peripheral findings
carry clinical weight in RVO [15,27]. At the same time, UWF-CFP images introduce peripheral distortion and
uneven illumination that can mislead saliency methods and classifiers and that may differ across devices.
Model development with ultrawide-field data should, therefore, include distortion correction, peripheral
intensity normalization, and careful definition of valid regions for analysis. Reporting results both on full
ultrawide-field views and on centrally cropped fields would clarify the added value of the extended field of
view.

Most of the studies (87%) were conducted in Asian countries, namely China, Taiwan, and Japan, which might
influence the generalizability of the findings. The AI models and parameters used vary between different
studies, making it difficult to compare them directly.

Most models used a single imaging modality, with CFP dominating classification tasks and FA featuring
prominently in segmentation and treatment prediction. Only a small number of studies combined
modalities, typically as limited pairs such as fundus with angiography or fundus with angiography and OCT
[23,25]. There is a clear opportunity for multimodal fusion that brings together structural and
perfusion information. Combining OCT or OCTA with angiography can reduce missed ischemia and support
more reliable prediction of treatment response. Late fusion and attention-based fusion offer tractable
approaches that preserve interpretability while exploiting complementary signals.

Ground-truth creation relied on expert annotation, yet methods for managing variability among graders
were usually not described. Without data on agreement, adjudication, or label curation, it is difficult to
understand how label noise influenced learning and evaluation, especially for subtle distinctions between
branch and central occlusions and for delineating nonperfusion areas. Future work would benefit from
multigrader protocols with consensus or arbitration, routine reporting of interrater statistics, formal label
audits, and explicit handling of uncertain or borderline cases. Clear documentation of annotation tools and
instructions would also improve reproducibility and interpretability.

Beyond offline evaluation, prospective assessment embedded in routine care is needed to understand
workflow impact, safety, and clinician acceptance. With clinical validation reported only once [20], current
evidence does not address how these systems influence referral accuracy, time to decision, or reading room
workload. Useful designs include silent shadow deployments that record model outputs without altering
care, followed by controlled rollouts that measure operational and clinical endpoints. Prespecification of
operating points and calibration monitoring can support safe triage, while site-level analyses can reveal
where models help and where they fail.

XAI appeared in a substantial minority of studies, most often as Grad-CAM visualizations, yet it was usually
presented as an illustrative figure rather than a tool for systematic audit. A more rigorous approach would
move from qualitative heat maps to quantitative tests. Two practical checks are whether highlighted regions
align with ophthalmologist-defined structures, such as hemorrhages, cotton wool spots, and areas of
nonperfusion, and whether heat concentrates on clinically causal features rather than on artifacts or
spurious cues. Error analysis that groups false-positives and false-negatives by saliency patterns can reveal
consistent failure modes and guide targeted data curation. When prediction models rely on feature
importance, influential variables should be related to known pathophysiology and tested for stability across
sites and time. Publishing code and prespecified quality control procedures for saliency would make
explainability actionable and reproducible.

Ethical considerations, like patient privacy and data security, must be addressed to ensure the responsible
use of AI. It is important to ensure the protection of patients’ data as AI applications require access to
sensitive health information. Data anonymization and secure storage can prevent unauthorized access or
data breaches. Moreover, transparent algorithms, explainability, and clear usage policies are essential to
build trust among patients and healthcare providers. Finally, implementing regulations such as the AI
Act [38] can help establish standards and guidelines to safeguard these aspects.

While AI models can assist ophthalmologists in the diagnosis, segmentation, and treatment prediction of
RVO, they cannot yet replace expert judgment. Clinical decisions, particularly those involving treatment,
should not be based solely on AI outputs but should be verified by ophthalmologists to ensure patient safety
and responsible implementation.

Conclusions
AI has demonstrated considerable promise in the diagnosis, segmentation, and prediction of treatment for
RVO. Most studies have focused on classification tasks using CFPs, with DL, particularly CNNs, being the
predominant approach. However, model performance remains variable, and internal validation results often
overestimate real-world accuracy due to limited external and clinical validation. The generalizability of
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current findings is further constrained by geographical concentration, dataset heterogeneity, and
inconsistent methodological reporting.

Future research should prioritize the development of multimodal and externally validated models trained on
diverse, well-annotated datasets. Standardized reporting of performance metrics, inclusion of multi-grader
consensus in ground truth creation, and incorporation of explainable AI methods will enhance transparency
and clinical applicability. Ethical and regulatory considerations, especially those related to data privacy,
accountability, and compliance with frameworks such as the European Union AI Act, are essential to guide
responsible adoption. While AI systems can serve as valuable decision-support tools for ophthalmologists,
they should complement rather than replace clinical expertise. Their integration into ophthalmic practice
must be guided by rigorous validation, transparency, and ongoing human oversight to ensure patient safety
and trustworthy implementation.
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