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H I G H L I G H T S

• SmartAQ + improves SmartAQ’s estimations of PM2.5 with machine learning.
• It reduced mean error, bias, and fractional error by ~50 % versus SmartAQ baseline.
• SmartAQ + detected 70 % of PM2.5 daily limit exceedances, tripling SmartAQ’s accuracy.
• SmartAQ + performs well in locations without sensor data.
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A B S T R A C T

Monitoring PM2.5 (mass of particles with diameter less than 2.5 μm) concentrations is challenging due to the 
limited number of ground-level monitoring stations and the limitations of existing modeling approaches. This 
study introduces SmartAQ+, a data fusion model that combines a chemical transport model-based system 
(SmartAQ) with low-cost sensor measurements and machine learning (ML) to enhance high-resolution PM2.5 
estimations at the present-time at a 1 × 1 km2 scale. SmartAQ+ integrates real-time data from low-cost PM2.5 
sensors, weather stations, and land-use information to improve the accuracy of present-time PM2.5 estimations at 
all locations in an urban area. SmartAQ+ demonstrated superior performance compared to SmartAQ that does 
not use real-time measurements in estimating the present-time PM2.5, reducing the corresponding mean error, 
fractional bias (FBIAS) and fractional error (FERROR) by a factor of two. SmartAQ+ correctly identified 132 out 
of 190 PM2.5 exceedance events of the daily limit of 25 μg m− 3, compared to SmartAQ’s 34, while reducing false 
positives by a factor of 2 and missed events by a factor of 3. The performance gains depended on the availability 
of nearby sensors. In data sparse zones and during unusual events the model can inherit biases from the chemical 
transport model and can underestimate extremes. The study highlights the potential of data fusion models to 
address the limitations of standalone approaches, offering more precise air quality estimations in areas of a city 
in which there are no measurements.

1. Introduction

According to the World Health Organization (2018), 92 % of the 
global population is exposed to pollutant levels that exceed the air 
quality standards considered safe for human health. PM2.5 (mass of 
particles with diameter less than 2.5 μm) pose a major health risk. 
Exposure to PM2.5 can lead to various health problems, including a 
higher risk of heart disease, greater chances of heart attacks and strokes, 

impaired lung development, and an increased likelihood of developing 
lung diseases (Landrigan et al., 2018).

The limited number of ground-level air quality monitoring stations 
restricts our capacity to monitor spatiotemporal variations in pollutant 
concentrations (Tang et al., 2024). Several air quality forecasting models 
have been developed and assessed for their performance on hourly, 
daily, and seasonal timescales. Both statistical methods and chemical 
transport models (CTMs) have been used for air quality assessment and 
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forecasting (Delle Monache et al., 2020; Kaya and Gündüz Öğüdücü, 
2020; Kukkonen et al., 2012). Statistical models are based on historical 
air quality and meteorological data and require minimal computational 
time because they do not account explicitly for pollutant emissions and 
atmospheric processes (Hamill and Whitaker, 2006; Pappa and Kio
utsioukis, 2021). CTMs simulate air quality by modeling chemical and 
physical processes occurring in the atmosphere. These models do not 
require historical data and can offer insights into pollutant sources, 
whether local or resulting from long-range transport, as well as the 
formation of secondary pollutants (Zhang et al., 2012). CTMs depend on 
detailed information about pollutant sources, including industrial 
emissions, traffic, biomass burning, and other human activities, to pro
duce their forecasts. However, emissions inventories can be incomplete, 
outdated, or inaccurate, leading to errors and biases (Hua et al., 2024). 
CTMs are also limited by uncertainties in meteorological forecasting. 
Since air quality is heavily influenced by weather conditions, such as 
temperature, wind speed, and precipitation, errors in weather forecasts 
propagate into the air quality predictions.

Grid resolution plays a crucial role in CTM studies targeting major 
urban areas, as sources like on-road traffic, commercial cooking, and 
biomass burning often exhibit steep gradients at the urban scale (Allan 
et al., 2010; Lanz et al., 2007). High-resolution pollutant concentration 
predictions enable better exposure assessments, facilitating comparisons 
among subpopulations within a metropolitan area (Wolf et al., 2020).

Machine learning (ML) models have demonstrated good perfor
mance in air pollution modeling due to their ability to capture complex 
nonlinear relationships among air pollutant concentrations and various 
predictors, including satellite data, meteorological variables, and land 
use information (Arowosegbe et al., 2022; De Hoogh et al., 2019; Lee 
et al., 2011; Tang et al., 2024). Support vector machines and artificial 
neural networks have shown promising results (Bai et al., 2016; Kar
imian et al., 2019; Prasad et al., 2016; Voukantsis et al., 2011; Zhou 
et al., 2019). Random forest (RF) ML algorithms have been used to es
timate nitrogen dioxide (NO2) and PM2.5 levels across various regions, 
time periods, and spatial resolutions (De Hoogh et al., 2018; Stafoggia 
et al., 2019). Ensemble models have been developed to map air pollutant 
concentrations (Requia et al., 2020; Yu et al., 2022). Deep neural net
works have been implemented to further enhance modeling perfor
mance (Li and Wu, 2021).

A key limitation of ML-based models is their reliance on historical 
data. Their predictive accuracy is heavily influenced by the quality, 
quantity, and diversity of the training data. In estimating PM2.5 levels, 
historical data typically include past air quality measurements, meteo
rological conditions, and occasionally traffic and industrial activity 
patterns. This dependency makes ML models underperform in situations 
for which they have not been trained. For example, sudden shifts in 
meteorological patterns, changes in pollution sources (e.g., new regu
lations or industrial activities), or unprecedented events are challenging 
for ML models. Moreover, ML models, particularly those lacking 
domain-specific knowledge, treat data as abstract inputs without 
explicitly considering the physical and chemical processes that drive 
PM2.5 formation, transport, and dispersion. ML-based predictions may 
also suffer from overfitting, where the model becomes overly specialized 
in the specific characteristics of the training data, leading to poor 
generalization in new conditions. Finally, increased model complexity, 
such as that introduced by large ensembles or deeper neural networks, 
can reduce interpretability and raise computational demands, often 
without yielding significant improvements in predictive performance 
(Kerckhoffs et al., 2019).

Researchers are increasingly exploring hybrid frameworks that 
integrate the strengths of CTMs and ML through data fusion techniques. 
This approach seeks to integrate multiple auxiliary inputs—such as real- 
time ground-based measurements, high-resolution emission inventories, 
satellite-derived observations (e.g., aerosol optical depth), real-time 
meteorological data, and land use characteristics—to improve the ac
curacy of the predictions.

Past studies have successfully used ML to transform coarse CTM 
outputs into fine-resolution (1 × 1 km2) pollution maps. In a recent 
study (Dinkelacker et al., 2023) the authors developed an RF model to 
downscale PMCAMx predictions in southwestern Pennsylvania, 
achieving low bias and good performance across species and sources. 
However, their model had limitations in representing long-range 
pollution transport and relied solely on CTM output without observa
tional correction. Another study (Bi et al., 2022) used RF to downscale 
global GEOS Composition Forecasting (GEOS-CF) predictions over 
China’s Fenwei Plain to 1 km resolution, showing strong short-term 
forecast performance. Lv et al. (2021) applied ML models like RF and 
Support Vector Regression in China to reduce bias in PM2.5 component 
forecasts, with high accuracy but limited urban-scale spatial testing.

More advanced frameworks like those by Malings et al. (2024) and 
Fang et al. (2023) combine CTMs’ output with satellite and ground 
observations. Malings et al. (2024) introduced a modular, 
uncertainty-aware NO2 prediction framework using satellite data and 
CTM outputs (GEOS-CF), achieving sub-city scale forecasts (~5 km). 
Fang et al. (2023) used an Ensemble Kalman Filter to merge ML pre
dictions with a GEOS-Chem ensemble, reducing the root mean square 
Error (RMSE) and improving forecasting but at high computational cost.

Studies like those of Koo et al. (2023) in South Korea and Xu et al. 
(2021) in Shanghai demonstrated that ML can significantly improve 
short-term (6–48 h) PM2.5 forecasts by correcting CTM biases using 
observations from the national regulatory network. Testing of these 
models indicated improved agreement with ground truth and reduction 
of false alarms.

Though regulatory-grade measurements are frequently used for 
model training and evaluation, limited site coverage reduces the 
generalizability and applicability of these models to all environments, 
especially in under-monitored or resource-limited areas. While some 
studies achieve 1 km spatial resolution, many remain at coarser scales 
(12–36 km). Few models are explicitly evaluated for their effectiveness 
in detecting pollution hotspots or extreme PM2.5 events. Evaluation 
often focuses on overall statistical performance rather than spatial or 
temporal extremes.

This study proposes a hybrid approach (SmartAQ+) that combines 
the CTM-based SmartAQ system and ML to enhance the precision of 
PM2.5 estimation fields. SmartAQ+ builds on the SmartAQ system, 
which uses PMCAMx and high-resolution meteorological data to provide 
forecasts at a 1 × 1 km2 resolution.

SmartAQ’s ability to capture pollution levels differs across city zones 
and seasons and varies from average to excellent (Siouti et al., 2022, 
2023b). Errors are due to uncertainties in emissions, in the simulation of 
atmospheric chemistry and transport, but also to the fact that errors in 
the WRF model are inherited by SmartAQ (Pappa et al., 2023). Wind 
speed is systematically overestimated, particularly in colder months, 
influencing the accuracy of PM2.5 predictions, as shown by the increased 
error at most monitoring stations during winter. Rainfall predictions are 
accurate about 50 % of the time (Pappa et al., 2023), which directly 
affects modeled wet deposition processes. Soil moisture is also consis
tently overestimated, which may alter atmospheric stability and 
humidity-driven chemistry near the surface.

SmartAQ+ enhances the SmartAQ’s estimation for the present by 
incorporating real-time, localized data from nearby low-cost PM2.5 
sensors, city-wide weather stations, and land-use variables such as 
cooking, biomass burning, road density, and population density. 
SmartAQ+ differs from recent hybrid frameworks that fuse CTM output 
with observations. The low-cost sensor network is used to correct 
present-time PM2.5 estimates from the CTM based SmartAQ system. 
SmartAQ+ also operates on top of a CTM that already resolves the urban 
domain at 1 × 1 km2, so the ML component focuses on bias correction 
and spatial refinement of an existing fine resolution field.
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2. Methods

2.1. Input data

2.1.1. SmartAQ system
The SmartAQ forecasting system utilizes six key models to predict 

weather conditions, anthropogenic, biogenic and marine emissions, 
pollutant concentrations, and pollutant sources (cooking, biomass 
burning, long-range transport, transportation, ships, etc.) (Siouti et al., 
2023a, 2023b). It delivers three-day forecasts for major particle-phase 
pollutants (PM1, PM2.5, PM10), gas-phase pollutants (e.g., NOx, SO2, 
CO, O3, and volatile organic compounds) and the chemical composition 
and size distribution of aerosols. It also estimates the sources of all 
pollutants. The forecasts have an hourly time resolution. To enhance 
focus on the desired European urban area, three nested grids with pro
gressively increasing spatial resolution are employed.

The SmartAQ system uses the WRF model (Skamarock et al., 2019) to 
compute key meteorological fields (e.g., cloud cover, precipitation, 
temperature and humidity) required for air quality predictions. For 
natural and terrestrial ecosystems, MEGAN (Model of Emissions of Gases 
and Aerosols from Nature) estimates gas and aerosol emissions, inte
grating WRF meteorological data with land use information (Guenther 

et al., 2006, 2012). Marine emissions, including sea salt and organics, 
are calculated using the O’Dowd and Monahan algorithms (Monahan 
et al., 1986; O’Dowd et al., 2008), which rely on WRF-predicted wind 
speeds over the sea surface. Anthropogenic emissions are derived from 
the TNO emission inventory (Kuenen et al., 2022), adjusted to the spe
cific simulation day and month. To model air pollution within the target 
domain, the PMCAMx chemical transport model is applied, while the 
Particulate Source Apportionment Technology (PSAT) algorithm 
(Wagstrom et al., 2008) determines the contributions of individual 
sources to pollutant concentrations. Additional details are available in 
the study of Siouti et al. (2022).

In the first application of SmartAQ, the city of Patras, Greece, was 
used as a test case. The outer domain, which covers all Europe, has 36 ×
36 km2 horizontal spatial resolution and covers a region of 5400 × 5832 
km2, while the three nested domains, which are parts of Greece, regions 
of 276 × 276, 114 × 114 and 36 × 36 km2, respectively (Fig. 1). In the 
vertical, PMCAMx uses 14 layers up to 10 km for all the modeling do
mains. The surface layer extends approximately up to 50 m.

2.1.2. Meteorology
Apart from the WRF predictions used in the SmartAQ system, we 

used real-time meteorological observations from a weather station 

Fig. 1. (a) Overview of the ML methodology and (b) the study area.
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located at the University of Patras in Rio as input to the ML model. The 
station provides hourly measurements of the wind speed, wind direc
tion, and rainfall. At each hour, the measurements from the meteoro
logical station at the University of Patras were paired with every grid cell 
and used as time varying predictors for the whole domain. These vari
ables complemented the spatially resolved meteorological information, 
deriving from WRF, which was already embedded in the SmartAQ 
inputs.

2.1.3. Land use features
Although the TNO emissions inventory is already used as an input to 

SmartAQ, we also supplied spatial indicators of land use and emissions 
directly into the ML model. The ML does not have access to the internal 
information of the SmartAQ system and these spatially varying yet 
temporally invariant variables act as stable priors that guide the 
SmartAQ+ correction especially where sensor coverage is sparse.

The ML model’s input includes information for each grid cell 
regarding its land use, population distribution, biomass burning and 
cooking emissions, and the percentage of the total road surface (Fig. 1). 
The United States Geological Survey (USGS) geographical datasets for 
topography and land use, which are also inputs to WRF, were utilized to 
classify the land use within the modeling domain. The land is catego
rized into sea, urban, agricultural, rangeland, forest, and uncategorized 
areas.

The population distribution was calculated based on population data 
provided by the European Union. The results were derived from the most 
recent database, the Eurostat census grid 2021 (2021). The data pertain 
to 2021 and are available in a 1 × 1 km2 grid.

Residential biomass burning emissions at spatial resolution of 1 × 1 
km2 for the Patras area have been estimated by Siouti et al. (2023a). 
Their spatial distribution is based on the density of houses in the 
modeling domain of Patras. Cooking emissions are spatially distributed 
based on the density of the restaurants in each 1 × 1 km2 grid cell of the 

modeling domain (Siouti et al., 2021).
The percentage of total road surface within each 1 × 1 km2 grid cell 

was quantified using ArcGIS Explorer Desktop (ESRI). Road transport 
emissions are then spatially allocated according to this road surface 
fraction.

2.1.4. Low-cost PM2.5 sensor network
A low-cost sensor network consisting of 29 Purple Air devices (Pur

pleAir PA-II) was used to provide the PM2.5 concentration at fixed lo
cations in the study area (Fig. 2). Thirteen devices were located in urban 
cells, thirteen in uncategorized, and three in rangeland cells (Table S1). 
We used measurements from January 1, 2021, to December 31, 2023 for 
this study. All measurements were averaged to 1 h. Each device con
tained two identical sensors (PMS5003). We used the average of the two 
sensors of each device. In cases where one of the sensors was constantly 
reporting extreme values (e.g. above 1000 μg m− 3) or too low (e.g. 0.5 
μg m− 3) that sensor was excluded and the measurements of the other 
were used. The PM2.5 sensor’s measurements were corrected using the 
methodology suggested by Kosmopoulos et al. (2020). Their study 
suggested a linear calibration formula that reduces the measured PM2.5 
by approximately half. Using this correction reduced the hourly PM2.5 
relative mean error to 18 % (1.1 μg m− 3), with negligible bias.

This calibration was applied uniformly to all sensors for the full study 
window (January 1, 2021–December 31, 2023), and any future 
SmartAQ+ deployment should likewise ingest corrected sensor mea
surements to operate as intended.

2.2. Data processing

The output of SmartAQ was free of missing values, requiring no 
further imputation or processing. Temporal features, including the day 
of the week (represented as integers 1–7), the month (1–12), and the 
hour of the day (0–23), were added to the dataset to account for 

Fig. 2. Low-cost sensor network in Patras.The 19 sites used for training/validation and the 10 sites used for testing are shown.
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potential temporal variations in PM2.5 concentrations. The above fea
tures were included as integers because the tree-based model can cap
ture cyclic structure through splits on these variables.

Weather data processing involved converting wind direction, origi
nally measured in degrees, into eight categorical bins corresponding to 
cardinal and intercardinal directions. These categories were defined as 
North, Northeast, East, Southeast, South, Southwest, West, and North
west, enabling the incorporation of wind direction as a categorical 
variable in the model.

The contribution of cooking, biomass burning, and roads to the total 
emissions in individual computational cells ranged from zero to 17 %, 2 
%, and 6 %, respectively. Population density values spanned from 0 to 
11,809 inhabitants per square kilometer. These features were inserted as 
float values to let the ML algorithm choose the optimal split threshold. 
Additionally, land-use classifications were assigned integer labels cor
responding to different categories: 0 for uncategorized, 1 for sea, 2 for 
urban, 3 for agriculture, 4 for rangeland, and 5 for forest.

No imputation or specific handling of missing values was performed 
for any type of data, as the ML model manages missing data during 
training.

2.3. Machine learning model

Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) is 
an advanced implementation of gradient-boosted decision trees that 
handles large and complex datasets (Ma et al., 2020). Its ability to build 
an ensemble of decision trees sequentially, where each new tree focuses 
on correcting the errors of the previous ones, makes it particularly 
effective in capturing complex patterns and relationships within the 
data. XGBoost is well-suited for the diverse and multifaceted features of 
the present application because its tree-based structure naturally han
dles different types of features without the need for extensive pre
processing or scaling. This allows the model to effectively capture the 
non-linear interactions between variables, such as the impact of land 
use on PM2.5 levels during specific hours or the seasonal effects of 
biomass burning.

XGBoost demonstrates strong resilience to noisy and missing data, 
which is a common challenge when working with low-cost sensors that 
may occasionally provide unreliable measurements. Its built-in mecha
nisms for handling missing values ensure that the model remains stable 
even when some sensor data is unavailable (Liu et al., 2021). Under
standing the relative impact of different factors on PM2.5 predictions 
produced by XGBoost is possible though the quantification of the 
importance of each feature.

We used XGBoost with a regularizing hyperparameter setting guided 
by preliminary tuning on the training data, using the mean error as the 
loss function. The final configuration used 300 trees with a learning rate 
of 0.1, a maximum depth of 10, strong stochastic regularization through 
row subsampling of 0.2 and column subsampling per tree of 0.1, and L1 
and L2 penalties of 1.0 and 0.8 to shrink complex trees and promote 
sparsity. All remaining parameters were left at their defaults.

During the development of SmartAQ+, we evaluated several other 
ML algorithms, including RF (Svetnik et al., 2003), Multi-Layer Per
ceptron (MLP), CatBoost, and Light Gradient Boosting Machine 
(LightGBM) (Ke et al., 2017). XGBoost consistently outperformed them 
in terms of prediction accuracy and computational efficiency. Random 
Forest, for instance, had slower convergence and lower accuracy. MLPs 
required extensive tuning, while CatBoost and LightGBM were less 
effective.

The trained XGBoost model in SmartAQ+ operates every hour using 
the most recent PM2.5 predictions from the SmartAQ system, the latest 
PM2.5 measurements from the sensor network, and the rest of the vari
ables to refine SmartAQ’s prediction for each grid cell at the present- 
time (Fig. 1).

2.4. Use of sensor inputs in the ML model

Only the 7 nearest sensors and a complementary sensor located at a 
background site (Platani) are selected for input to the ML model when 
processing data for estimating the PM2.5 concentration at each specific 
cell of the grid. If the nearest sensor is more than 4 km away, it is 
excluded from the input data. This exclusion ensures that the model only 
processes sensor data that is geographically relevant.

By using only the nearest sensors, the model better reflects the real- 
time conditions of the target cell, accounting for local environmental or 
operational factors that may influence the data. This approach also re
duces the risk of irrelevant or outdated information from distant sensors 
skewing the model’s predictions. If fewer than 7 sensors fall within the 4 
km radius, the model uses only the available sensors, forcing itself to rely 
more on the other input variables. In essence, the latter methodology 
helps SmartAQ+ form its estimations at remote areas, where no sensor 
data are available and forces the model to rely more on the SmartAQ 
predictions and the background sensor for these areas.

2.5. Training and validation

We trained the SmartAQ+ model using data from 19 measurement 
sites (65 % of the total available sites), located at different cells, from 
January 1, 2021, to December 31, 2022. This group of sites is called 
training-validation group hereafter (Table S1). PM2.5 measurements 
from this sensor group, from January 1, 2023, to December 31, 2023, 
were used for evaluation.

Additionally, a sub-network of 10 sites (Table S1) was selected as a 
complementary test set, called testing group hereafter. These devices 
were installed during 2022 in the area and were better suited for test 
purposes, because of the limited training data they could provide. They 
were hidden from the model at the training phase and their location 
differed from the location of the training-validation group. We used the 
testing group to provide the PM2.5 concentration as an extra step in 
assessing the model’s performance in “new” locations during 2023. For 
testing group of sensors, measurements from January 1, 2023, to 
December 31, 2023 were used.

For the evaluation of the present-time capability we executed 
retrospective simulations with model outputs at an hourly time step for 
the entire year 2023. We stored the resulting hourly concentration fields 
for the full annual cycle and compared the model values at the sensor 
locations with the temporally aligned corrected measurements.

2.6. Performance metrics

The mean error (ME), fractional bias (FBIAS), and fractional error 
(FERROR) were used to evaluate the model performance: 

ME =
1
N

∑N

i=1
|Pi − Oi| (1) 

FBIAS=
2
N

∑N

i=1

(Pi − Oi)

(Pi + Oi)
(2) 

FERROR=
2
N

∑N

i=1

|Pi − Oi|

(Pi + Oi)
(3) 

where, N is the total number of measurements, Pi is the predicted con
centration and Oi is the corresponding reference concentration.

Based on the study by Morris et al. (2005), PM2.5 model performance 
for daily average values is considered excellent for FBIAS ≤ ±15 % and 
FERROR ≤ ±35 %, good for FBIAS ≤ ±30 % and FERROR ≤ ±50 %, 
average for FBIAS≤ ±60 % and FERROR ≤ ±75 %, while there are 
fundamental problems in the modeling system for higher FBIAS and 
FERROR.
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The European Union has established a daily average limit value for 
PM2.5 concentrations at 25 μg m− 3, which should not be exceeded more 
than 18 times per calendar year by 2030 (European Parliament, 2024). 
We assessed the performance of the SmartAQ and SmartAQ+ models in 
identifying days when PM2.5 concentrations exceeded the EU-defined 
limit somewhere in the urban area. For each location where a sensor 
existed, we compared the number of times the model-predicted and 
sensor-observed daily average PM2.5 levels surpassed the 25 μg m− 3 

threshold. This analysis aimed to determine the precision and reliability 
of both SmartAQ and SmartAQ+ systems in capturing exceedance 
events, which is critical for ensuring compliance with regulatory stan
dards and informing public health advisories. A True Positive (TP) event 
is when both the observed and the predicted daily average PM2.5 
exceeded 25 μg m− 3. A False Positive (FP) when the model predicted 
PM2.5 above the threshold, but the observed PM2.5 concentration was 
below it. Under the same reasoning, we considered the True Negative 
(TN) and the False Negative (FN) cases. We computed the True Positive 
Rate (TPR) and False Positive Rate (FPR) of each model based on the 
following equations: 

TPR=
TP

TP + FN
(4) 

FPR=
FP

FP + TN
(5) 

Practically, TPR is the proportion of days where the model correctly 
identified PM2.5 exceedance when the observed concentration was 
above the 25 μg m− 3 threshold and FPR is the proportion of days where 
the model incorrectly predicted PM2.5 exceedance when the observed 
concentration was below the threshold.

3. Results

3.1. Performance in predicting average monthly patterns

We first used the monthly average predicted and measured PM2.5 
concentrations for evaluating SmartAQ+ for the test period (2023). 
Fig. 3 displays the average FERROR and FBIAS of the SmartAQ+ and 
SmartAQ models for 2023 for each location. Fig. 4 illustrates the mean 
monthly FBIAS of SmartAQ and SmartAQ+ at selected locations. 
Table S2 presents the SmartAQ+ evaluation metrics at each location. 
Based on the average FERROR and FBIAS for 2023, SmartAQ+ was 
excellent for 7 training-validation sites, good for 7, and average for 5. As 
far as the hidden 10 test sites are concerned, SmartAQ+ was excellent 
for 5, good for 2 and average for 3. The ME of SmartAQ+ was 2.1 ± 1 μg 
m− 3 at the training-validation sites and 2.3 ± 1 μg m− 3 at the 10 test 
sites. FBIAS was 9 ± 23 % and FERROR 34 ± 13 % at the training- 
validation sites and approximately the same at the test sites. There 
were two sites (Nafpaktos, Ovrya) where SmartAQ+ performance in 
terms of FBIAS and FERROR was significantly worse than the rest. 
Nafpaktos is a small city approximately 10 km from Patras (38◦ 23′ 
39.0588″ N, 21◦ 50′ 4.9488″ E). The absence of nearby low-cost sensors 
for training had a negative impact on the performance of the SmartAQ+

model in that small city (FERROR = 59 %, FBIAS = 59 %). Ovrya is a 
suburban location approximately 7 km from Patras (38◦ 11′ 26.844″ N, 
21◦ 43′ 45.12″ E). Its distance from the core of the low-cost sensor grid 
played a role, because the SmartAQ+ model relied on the SmartAQ 
model more and inherited its errors. SmartAQ’s FERROR was 73 % and 
FBIAS 51 %. SmartAQ+ decreased these errors (FERROR = 70 %, FBIAS 
= − 32 %) but its performance remained worse than the other sites. Out 
of the four sites affected by intense biomass burning, SmartAQ+ was 
excellent for one, good for two, and average for the remaining one. 
SmartAQ+ was excellent for 3 urban sites, good for 5, and average for 
the remaining 4 (Fig. S1). SmartAQ+ performance was classified as 
excellent and good for the two sites with intense cooking emissions.

SmartAQ+ performed better than SmartAQ at all training-validation 

and test sites (Table S5) based on monthly-averaged values. SmartAQ 
was good for 3 sites, average for 20, and below average for 6 (Fig. 3).

The average monthly FBIAS (Fig. 4) shows that SmartAQ+ reduced 
SmartAQ FBIAS by approximately 100 % for most months and sites, with 
the largest gains (Lagoura, Paralia, Mesa Agyia South, City Center) at the 
urban locations and limited improvement at the remote site of 
Nafpaktos.

We used the mean daily values for evaluating SmartAQ+ at all lo
cations for January, April, July, and October 2023 (Table S3, Table S4). 
We selected January, April, July, and October 2023 to represent one 
month per season—winter, spring, summer, and autumn, respectively, 
as we expect different patterns and influencing factors across seasons. 
Fig. 5 shows average PM2.5 predictions by the SmartAQ and SmartAQ+

models for January, April, July, and October 2023.
In January, SmartAQ+ estimated a mean PM2.5 concentration of 16 

μg m− 3 at an area including the center of Patras and its east and west 
suburbs. The mean measured PM2.5 concentrations of sensors located 
inside that area was 13 μg m− 3. SmartAQ predicted an average of 27 μg 
m− 3 at the urban core and 6 μg m− 3 at the suburbs. The sensors located 
in the city center (New Port of Patras, Psila Alonia, Kypseli, Germanou, 
City Center, Trion Navarchon, Agios Dionysios) measured on average 
15 μg m− 3. SmartAQ+ produced more accurate concentration estimates 
within the urban core, whereas SmartAQ consistently overpredicted the 
PM2.5 concentrations. Also, SmartAQ+ yielded correct estimates for 
suburban areas, in which the SmartAQ system underestimated PM2.5.

For April, SmartAQ+ and SmartAQ predictions differ by a factor of 
two (~10 μg m− 3) near the city center and the south suburbs. The 
average estimated concentrations of SmartAQ+ for the urban core was 
11 μg m− 3. Sensors in the urban core measured on average 8 μg m− 3. 
SmartAQ+ had a lower average FERROR (18 %) than SmartAQ (37 %) at 
these locations, based on sensor measurements. SmartAQ+ estimates 

Fig. 3. (a) SmartAQ+ and (b) SmartAQ evaluation using FERROR (%) versus 
FBIAS (%) of monthly PM2.5 concentrations for all sites in Patras during 2023. 
Circles denote training sites and squares denonte testing sites.
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differed from SmartAQ in background sites by an average of 4 μg m− 3 

(30 %). The sensor at Platani (background site) measured an average of 
4 μg m− 3 for April, while SmartAQ+ estimated 5 μg m− 3 and SmartAQ 9 
m− 3. In summary, SmartAQ+ halved SmartAQ’s overestimation both 
within the urban core and at background sites, reducing the corre
sponding biases by 50 %.

For July, SmartAQ+ estimated an average of 8 μg m− 3 in the urban 
core and SmartAQ 10 μg m− 3. The sensors inside that area measured on 
average 7 μg m− 3. At background sites, the predicted concentrations by 
the two models differ by 5 μg m− 3, with SmartAQ+ estimating on 
average 7 μg m− 3. The sensor at Platani measured on average 5 μg m− 3. 
At lower concentration levels in July, SmartAQ+ markedly reduced 
SmartAQ’s positive bias, decreasing the urban-core FERROR from 23 % 

to 16 % and the background-site FERROR from 43 % to 28 %.
For October, SmartAQ+ estimated an average PM2.5 concentration of 

8 μg m− 3 at locations near the city center, where sensors measured 7 μg 
m− 3. Similar to July, the SmartAQ system overestimated PM2.5 with an 
average predicted value of 11 μg m− 3. At background sites, SmartAQ+

estimated on average 5 μg m− 3 and the sensor at Platani measured 3 μg 
m− 3. SmartAQ predicted an average of 9 μg m− 3 in Platani.

3.2. Performance in predicting average daily patterns

Fig. 6 illustrates the average diurnal PM2.5 profiles for January 2023 
at 6 selected sites (5 urban and 1 rural). Four of the sites (Mesa Agyia 
South, City Center, Lagoura, and Paralia) are located in Patras, where 
the majority of the study’s sensors exist. Psathopirgos and Nafpaktos are 
locations 15 and 18 km away from Patras. Mesa Agyia South and Naf
paktos are testing sites and the rest are training sites.

During January, elevated PM2.5 concentrations were measured by 
the sensors at all five selected urban sites after 17:00. This is due to 
intense biomass burning during winter in Patras (Kaltsonoudis et al., 
2025). SmartAQ underestimated the concentrations during the after
noon and evening by a factor of 2. SmartAQ+ had a better performance 
at the four urban sites during the same hours, decreasing the FERROR of 
SmartAQ from 61 % to 23 %.

Fig. 7 illustrates the average diurnal PM2.5 profiles for July 2023 at 
the same sites. Except for Nafpaktos and Psathopirgos, SmartAQ over
estimates PM2.5 concentrations during all hours by 2–4 μg m− 3. At 
Psathopirgos there is an underestimation of 5–7 μg m− 3 by SmartAQ. 
SmartAQ+ manages to mitigate these biases with a mean error of 1–2 μg 
m− 3 at all sites, except for Nafpaktos. At Nafpaktos, SmartAQ+ over
estimates PM2.5 by 6 μg m− 3.

3.3. SmartAQ + performance in predicting daily PM2.5 limit exceedance

We evaluated the SmartAQ and SmartAQ+ models in detecting ex
ceedance events by comparing their predictions with sensor measure
ments at training-validation and testing sites together. A TP occurred 
when both predicted and observed values exceeded the limit, while an 
FP occurred when only the model did.

Based on the sensors’ measurements, the daily-average PM2.5 limit 
(25 μg m− 3) during 2023 was exceeded for 10 or more days at 12 of the 
study’s sites (Table S6). At these sites, the total number of exceedances 
was 190. SmartAQ+ identified correctly 132 events and SmartAQ 34. On 
the other hand, SmartAQ+ had 67 false-positive cases and SmartAQ 
152. SmartAQ+ missed 56 events and SmartAQ 134. Fig. 8 illustrates the 
TPR and FPR values of SmartAQ and SmartAQ+ at the 12 most polluted 
locations. SmartAQ+ exhibits significantly better TPR and FPR rates at 
all locations.

We selected the two most polluted locations (Kypseli and Lefka) and 
we examined the hourly-averaged measurements and model predictions 
during the exceedance days (Fig. 9). SmartAQ+ showed better perfor
mance in capturing the PM2.5 higher concentrations (>25 μg m− 3) at 
both sites. At Lefka, SmartAQ+ slightly underestimated the PM2.5 levels 
(Fig. 9d).

We also inspected the average observed and predicted PM2.5 con
centration during Fat Thursday (February 16) when people grill and 
feast on large amounts of meat, emitting significant amounts of cooking 
organic aerosol across the entire city (Kaltsonoudis et al., 2017). Fig. 10
displays the average PM2.5 on that day as predicted by SmartAQ+, 
SmartAQ and measured by multiple Purple Air sensors. The measured 
concentrations were above 35 μg m− 3 at a large area covering the city 
center and the outskirts. SmartAQ estimated lower concentration values 
by 5 μg m− 3 compared to the observed ones at a relatively smaller area 
(Fig. 10b) than the actual. SmartAQ+ improved the prediction by 
expanding the affected area (Fig. 10a) but the predicted concentrations 
were lower than the observed by 15–25 % at the suburbs of the city. The 
presence of real-time sensor measurements across the city played a 

Fig. 4. Mean monthly FBIAS of SmartAQ and SmartAQ+ at a) Lagoura (test 
site), b) Paralia, c) Mesa Agyia South (test site), d) City center, e) Psathopirgos 
(test site), and f) Nafpaktos (test site).
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significant role in adjusting the SmartAQ prediction by the SmartAQ+

system during this day. Finally, both models performed well (within 2 
μg m− 3) in predicting the average PM2.5 concentration (28 μg m− 3) at 
Nafpaktos.

3.4. Feature importance

We performed a SHapley Additive exPlanations (SHAP) analysis 
(Lundberg and Lee, 2017) on the SmartAQ+ model across the 36 × 36 
km2 geographical domain with a 1 × 1 km2 resolution. SHAP ranks the 
ML input features by how much they move a prediction away from a 
baseline. It borrows Shapley values from game theory to fairly split the 
total prediction difference among the features, so each feature’s score 
represents its relative importance.

The SHAP analysis was conducted for every grid cell using all 

available data test data from 2023. The feature importances varied 
depending on the presence of a reference sensor within a 4 km radius 
(Fig. 11). To investigate this effect, we categorized the SHAP impor
tances into two groups: (i) grid cells with at least one nearby sensor 
within 4 km and (ii) grid cells without any nearby sensor in this radius 
(Table S7). The importance of the SmartAQ prediction was 21 % at cells 
where nearby sensors existed and 53 % at cells with no nearby sensor. 
The importance of land-use variables was 19 % for cells with nearby 
sensor(s) and 35 % for cells without nearby sensors. Similarly, the 
importance of sensor measurements was 43 % for cells with nearby 
sensors and zero for cells without.

4. Discussion and conclusions

This study developed and evaluated SmartAQ+, a hybrid approach 

Fig. 5. Predicted monthly-average PM2.5 (μg m− 3) by SmartAQ and SmartAQ+ for January, April, July, and October 2023.
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that integrates a CTM (SmartAQ) with ML to enhance the accuracy of 
high-resolution PM2.5 estimations at the present time (or the past). Data 
from calibrated low-cost PM2.5 sensors, one weather station, and land- 
use variables, helped SmartAQ+ improve the accuracy of PM2.5 esti
mations at a 1 × 1 km2 resolution.

Overall, SmartAQ+ performed significantly better than SmartAQ, 
especially during the winter, with substantial improvements in both 
error and bias metrics. At the training sites, SmartAQ+ reduced the 
average FERROR from 62 % to 38 % in winter and from 49 % to 21 % in 
summer. FBIAS also decreased in winter (from 38 % to 33 %) and in 
summer (from 39 % to 3 %). At the test sites, the average FERROR 
dropped from 74 % to 40 % in winter and from 55 % to 33 % in summer. 
SmartAQ+ showed a lower FERROR compared to SmartAQ at nearly all 
locations. For FBIAS, SmartAQ+ showed improvements at 12 out of 29 
locations in winter and at 24 out of 29 locations in summer, highlighting 

its more robust performance during the summer.
Beyond general improvements, SmartAQ+ better characterized 

spatial variability in air pollution fields. This is evident in the seasonal 
maps, where SmartAQ+ consistently offered more localized and topo
graphically relevant predictions. This difference is because SmartAQ+

integrates sensor data from multiple locations, including nearby areas, 
to refine its predictions. The SmartAQ model is unaware of the low-cost 
sensor measurements.

SmartAQ+ appears to rely more on SmartAQ predictions in regions 
with sparse or no sensor coverage, such as marine and rangeland areas 
compared to areas with available nearby sensor data. This pattern is 
particularly evident in Fig. 5b, where SmartAQ+ and SmartAQ display 
agreement in isolated locations while diverging in urban-adjacent cells.

SmartAQ+ correctly identified more daily PM2.5 limit exceedance 
events and produced fewer false positives and missed events compared 

Fig. 6. Average diurnal PM2.5 profiles for January 2023 at a) Lagoura (test 
site), b) Paralia, c) Mesa Agyia South (test site), d) City center, e) Psathopirgos 
(test site), and f) Nafpaktos (test site).

Fig. 7. Average diurnal PM2.5 profiles for July 2023 at a) Lagoura (test site), b) 
Paralia, c) Mesa Agyia South (test site), d) City center, e) Psathopirgos (test 
site), and f) Nafpaktos (test site).
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to SmartAQ. At the most polluted locations (Kypseli and Lefka), 
SmartAQ+ better captured high PM2.5 concentrations and their tem
poral variations, though it slightly underestimated levels at Lefka. 
During a major cooking event in Patras, SmartAQ+ improved spatial 
predictions but underestimated concentrations in the outskirts. Both 
models performed well in less polluted areas. The improved present- 
time fields and the better identification of days above the European 
daily PM2.5 limit support operational uses in urban air quality man
agement. City services can use the 1 × 1 km2 maps to target advisories 
and responses at the neighborhood scale and to inform early alerts for 
vulnerable populations. The exceedance detection skill can assist regu
latory compliance checks and the same fields can guide the design and 
expansion of sensor networks by revealing persistent gaps in coverage.

The integration of real-time sensor data and land-use features into 
SmartAQ+ improved the SmartAQ predictions of PM2.5 concentration 
fields. However, when comparing the two systems directly, it is essential 
to consider that SmartAQ relies on chemical transport modelling 
without real-time measurements or historical data.

SmartAQ+ performance depends heavily on the availability of sensor 
input. In remote areas like Nafpaktos and Ovrya, where the number of 
nearby low-cost sensors was limited, the model relied on SmartAQ’s 
predictions and inherited its biases. This finding is further supported by 
the SHAP analysis, where the SmartAQ prediction was the dominant 
feature in data-sparse zones. A practical use of SmartAQ+ is to identify 
locations where new sensors would yield the largest reduction in un
certainty and to guide short term deployments that supply the references 
needed to evaluate and refine the corrections that are learned in sensor 
covered areas and then projected to unsampled cells.

The decision to constrain the model to seven sensor inputs per grid 
cell, including the Platani background site as the eighth sensor, was 
made to prevent a small group of nearby devices from dominating the 
feature space. We did not examine alternative configurations for the 
number of neighboring sensors or the 4 km distance threshold and future 
work should assess the effect of fewer sensors or adaptive radii on per
formance under different coverage regimes.

Fig. 8. True Positive (a) and False Positive (b) Rates of SmartAQ+ and Smar
tAQ in predicting days when the average PM2.5 concentration exceeded the 
limit of 25 μg m− 3 at multiple locations.

Fig. 9. Hourly PM2.5 concentrations at Kypseli (training site) for (a) SmartAQ and (b) SmartAQ+, and Lefka (training site) for (c) SmartAQ and (d) SmartAQ+ during 
days when the daily average concentration was above 25 μg m− 3.
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Even after applying standard corrections, low-cost sensors can still 
drift or react differently under extreme pollution levels. That residual 
noise might mislead the machine-learning model, especially during 
sudden spikes, so it is worth exploring more dynamic calibration or 
online bias correction in future work. Training on two years of Patras 
data and testing on the third could mean the model learned some city- 
specific weather or seasonal patterns. To be sure SmartAQ+ works 
elsewhere (or under different climate years), it would help to train and 
validate across multiple cities or longer time spans. The algorithm is 
expected to transfer best to cities with similar emission patterns and 
concentration ranges. Application in regions with substantially higher 
pollution can lead to larger bias because extrapolation beyond the 
training domain is not reliable. Preliminary tests in Athens, the capital of 
Greece, indicate that the model yields reasonable present-time estimates 
there. These tests are exploratory and will be analyzed in future work.

We evaluated general exceedance counts and a couple of cooking- 
related spikes but have not yet assessed how SmartAQ+ handles rare 
weather extremes. Future tests should include those events to confirm 
the model stays reliable when conditions are most challenging.

While SmartAQ+ performs well in present-time PM2.5 estimation, its 

architecture inherently ties it to historical observations and short-term 
trends. Attempting to extend its predictions to longer lead times could 
likely result in propagation of biases from SmartAQ due to errors in the 
underlying meteorological forecasts, emissions, or simulation of pro
cesses. Furthermore, adapting the ML framework to account for other 
pollutants, predictions of which are already produced by SmartAQ, 
would significantly broaden its utility in air quality forecasting. Lastly, 
implementing source apportionment techniques within the ML pipeline 
might suggest corrections to the SmartAQ source apportionment results.
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