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HIGHLIGHTS

e SmartAQ + improves SmartAQ’s estimations of PM; 5 with machine learning.

o It reduced mean error, bias, and fractional error by ~50 % versus SmartAQ baseline.

e SmartAQ + detected 70 % of PM, 5 daily limit exceedances, tripling SmartAQ’s accuracy.
e SmartAQ -+ performs well in locations without sensor data.
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Monitoring PMy 5 (mass of particles with diameter less than 2.5 pm) concentrations is challenging due to the
limited number of ground-level monitoring stations and the limitations of existing modeling approaches. This
study introduces SmartAQ+, a data fusion model that combines a chemical transport model-based system
(SmartAQ) with low-cost sensor measurements and machine learning (ML) to enhance high-resolution PMjy 5
estimations at the present-time ata 1 x 1 km? scale. SmartAQ+ integrates real-time data from low-cost PMy 5
sensors, weather stations, and land-use information to improve the accuracy of present-time PMj 5 estimations at
all locations in an urban area. SmartAQ-+ demonstrated superior performance compared to SmartAQ that does
not use real-time measurements in estimating the present-time PMj; s, reducing the corresponding mean error,
fractional bias (FBIAS) and fractional error (FERROR) by a factor of two. SmartAQ+ correctly identified 132 out
of 190 PMj 5 exceedance events of the daily limit of 25 pg m™3, compared to SmartAQ’s 34, while reducing false
positives by a factor of 2 and missed events by a factor of 3. The performance gains depended on the availability
of nearby sensors. In data sparse zones and during unusual events the model can inherit biases from the chemical
transport model and can underestimate extremes. The study highlights the potential of data fusion models to
address the limitations of standalone approaches, offering more precise air quality estimations in areas of a city
in which there are no measurements.

1. Introduction

According to the World Health Organization (2018), 92 % of the
global population is exposed to pollutant levels that exceed the air
quality standards considered safe for human health. PM; 5 (mass of
particles with diameter less than 2.5 pm) pose a major health risk.
Exposure to PMy5 can lead to various health problems, including a
higher risk of heart disease, greater chances of heart attacks and strokes,

impaired lung development, and an increased likelihood of developing
lung diseases (Landrigan et al., 2018).

The limited number of ground-level air quality monitoring stations
restricts our capacity to monitor spatiotemporal variations in pollutant
concentrations (Tang et al., 2024). Several air quality forecasting models
have been developed and assessed for their performance on hourly,
daily, and seasonal timescales. Both statistical methods and chemical
transport models (CTMs) have been used for air quality assessment and
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forecasting (Delle Monache et al., 2020; Kaya and Giindiiz Ogiidiicii,
2020; Kukkonen et al., 2012). Statistical models are based on historical
air quality and meteorological data and require minimal computational
time because they do not account explicitly for pollutant emissions and
atmospheric processes (Hamill and Whitaker, 2006; Pappa and Kio-
utsioukis, 2021). CTMs simulate air quality by modeling chemical and
physical processes occurring in the atmosphere. These models do not
require historical data and can offer insights into pollutant sources,
whether local or resulting from long-range transport, as well as the
formation of secondary pollutants (Zhang et al., 2012). CTMs depend on
detailed information about pollutant sources, including industrial
emissions, traffic, biomass burning, and other human activities, to pro-
duce their forecasts. However, emissions inventories can be incomplete,
outdated, or inaccurate, leading to errors and biases (Hua et al., 2024).
CTMs are also limited by uncertainties in meteorological forecasting.
Since air quality is heavily influenced by weather conditions, such as
temperature, wind speed, and precipitation, errors in weather forecasts
propagate into the air quality predictions.

Grid resolution plays a crucial role in CTM studies targeting major
urban areas, as sources like on-road traffic, commercial cooking, and
biomass burning often exhibit steep gradients at the urban scale (Allan
et al., 2010; Lanz et al., 2007). High-resolution pollutant concentration
predictions enable better exposure assessments, facilitating comparisons
among subpopulations within a metropolitan area (Wolf et al., 2020).

Machine learning (ML) models have demonstrated good perfor-
mance in air pollution modeling due to their ability to capture complex
nonlinear relationships among air pollutant concentrations and various
predictors, including satellite data, meteorological variables, and land
use information (Arowosegbe et al., 2022; De Hoogh et al., 2019; Lee
et al., 2011; Tang et al., 2024). Support vector machines and artificial
neural networks have shown promising results (Bai et al., 2016; Kar-
imian et al., 2019; Prasad et al., 2016; Voukantsis et al., 2011; Zhou
et al., 2019). Random forest (RF) ML algorithms have been used to es-
timate nitrogen dioxide (NO3) and PM, 5 levels across various regions,
time periods, and spatial resolutions (De Hoogh et al., 2018; Stafoggia
etal., 2019). Ensemble models have been developed to map air pollutant
concentrations (Requia et al., 2020; Yu et al., 2022). Deep neural net-
works have been implemented to further enhance modeling perfor-
mance (Li and Wu, 2021).

A key limitation of ML-based models is their reliance on historical
data. Their predictive accuracy is heavily influenced by the quality,
quantity, and diversity of the training data. In estimating PM, 5 levels,
historical data typically include past air quality measurements, meteo-
rological conditions, and occasionally traffic and industrial activity
patterns. This dependency makes ML models underperform in situations
for which they have not been trained. For example, sudden shifts in
meteorological patterns, changes in pollution sources (e.g., new regu-
lations or industrial activities), or unprecedented events are challenging
for ML models. Moreover, ML models, particularly those lacking
domain-specific knowledge, treat data as abstract inputs without
explicitly considering the physical and chemical processes that drive
PM, 5 formation, transport, and dispersion. ML-based predictions may
also suffer from overfitting, where the model becomes overly specialized
in the specific characteristics of the training data, leading to poor
generalization in new conditions. Finally, increased model complexity,
such as that introduced by large ensembles or deeper neural networks,
can reduce interpretability and raise computational demands, often
without yielding significant improvements in predictive performance
(Kerckhoffs et al., 2019).

Researchers are increasingly exploring hybrid frameworks that
integrate the strengths of CTMs and ML through data fusion techniques.
This approach seeks to integrate multiple auxiliary inputs—such as real-
time ground-based measurements, high-resolution emission inventories,
satellite-derived observations (e.g., aerosol optical depth), real-time
meteorological data, and land use characteristics—to improve the ac-
curacy of the predictions.
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Past studies have successfully used ML to transform coarse CTM
outputs into fine-resolution (1 x 1 km?) pollution maps. In a recent
study (Dinkelacker et al., 2023) the authors developed an RF model to
downscale PMCAMx predictions in southwestern Pennsylvania,
achieving low bias and good performance across species and sources.
However, their model had limitations in representing long-range
pollution transport and relied solely on CTM output without observa-
tional correction. Another study (Bi et al., 2022) used RF to downscale
global GEOS Composition Forecasting (GEOS-CF) predictions over
China’s Fenwei Plain to 1 km resolution, showing strong short-term
forecast performance. Lv et al. (2021) applied ML models like RF and
Support Vector Regression in China to reduce bias in PM3 5 component
forecasts, with high accuracy but limited urban-scale spatial testing.

More advanced frameworks like those by Malings et al. (2024) and
Fang et al. (2023) combine CTMs’ output with satellite and ground
observations. Malings et al. (2024) introduced a modular,
uncertainty-aware NO, prediction framework using satellite data and
CTM outputs (GEOS-CF), achieving sub-city scale forecasts (~5 km).
Fang et al. (2023) used an Ensemble Kalman Filter to merge ML pre-
dictions with a GEOS-Chem ensemble, reducing the root mean square
Error (RMSE) and improving forecasting but at high computational cost.

Studies like those of Koo et al. (2023) in South Korea and Xu et al.
(2021) in Shanghai demonstrated that ML can significantly improve
short-term (6-48 h) PMy 5 forecasts by correcting CTM biases using
observations from the national regulatory network. Testing of these
models indicated improved agreement with ground truth and reduction
of false alarms.

Though regulatory-grade measurements are frequently used for
model training and evaluation, limited site coverage reduces the
generalizability and applicability of these models to all environments,
especially in under-monitored or resource-limited areas. While some
studies achieve 1 km spatial resolution, many remain at coarser scales
(12-36 km). Few models are explicitly evaluated for their effectiveness
in detecting pollution hotspots or extreme PM, 5 events. Evaluation
often focuses on overall statistical performance rather than spatial or
temporal extremes.

This study proposes a hybrid approach (SmartAQ+) that combines
the CTM-based SmartAQ system and ML to enhance the precision of
PM, 5 estimation fields. SmartAQ+ builds on the SmartAQ system,
which uses PMCAMx and high-resolution meteorological data to provide
forecasts at a 1 x 1 km? resolution.

SmartAQ’s ability to capture pollution levels differs across city zones
and seasons and varies from average to excellent (Siouti et al., 2022,
2023b). Errors are due to uncertainties in emissions, in the simulation of
atmospheric chemistry and transport, but also to the fact that errors in
the WRF model are inherited by SmartAQ (Pappa et al., 2023). Wind
speed is systematically overestimated, particularly in colder months,
influencing the accuracy of PMj; 5 predictions, as shown by the increased
error at most monitoring stations during winter. Rainfall predictions are
accurate about 50 % of the time (Pappa et al., 2023), which directly
affects modeled wet deposition processes. Soil moisture is also consis-
tently overestimated, which may alter atmospheric stability and
humidity-driven chemistry near the surface.

SmartAQ+ enhances the SmartAQ’s estimation for the present by
incorporating real-time, localized data from nearby low-cost PMj s
sensors, city-wide weather stations, and land-use variables such as
cooking, biomass burning, road density, and population density.
SmartAQ+ differs from recent hybrid frameworks that fuse CTM output
with observations. The low-cost sensor network is used to correct
present-time PM; 5 estimates from the CTM based SmartAQ system.
SmartAQ+ also operates on top of a CTM that already resolves the urban
domain at 1 x 1 km? so the ML component focuses on bias correction
and spatial refinement of an existing fine resolution field.
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2. Methods
2.1. Input data

2.1.1. SmartAQ system

The SmartAQ forecasting system utilizes six key models to predict
weather conditions, anthropogenic, biogenic and marine emissions,
pollutant concentrations, and pollutant sources (cooking, biomass
burning, long-range transport, transportation, ships, etc.) (Siouti et al.,
2023a, 2023b). It delivers three-day forecasts for major particle-phase
pollutants (PM;, PMy 5, PM;), gas-phase pollutants (e.g., NOyx, SOo,
CO, O3, and volatile organic compounds) and the chemical composition
and size distribution of aerosols. It also estimates the sources of all
pollutants. The forecasts have an hourly time resolution. To enhance
focus on the desired European urban area, three nested grids with pro-
gressively increasing spatial resolution are employed.

The SmartAQ system uses the WRF model (Skamarock et al., 2019) to
compute key meteorological fields (e.g., cloud cover, precipitation,
temperature and humidity) required for air quality predictions. For
natural and terrestrial ecosystems, MEGAN (Model of Emissions of Gases
and Aerosols from Nature) estimates gas and aerosol emissions, inte-
grating WRF meteorological data with land use information (Guenther
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et al., 2006, 2012). Marine emissions, including sea salt and organics,
are calculated using the O’Dowd and Monahan algorithms (Monahan
et al., 1986; O'Dowd et al., 2008), which rely on WRF-predicted wind
speeds over the sea surface. Anthropogenic emissions are derived from
the TNO emission inventory (Kuenen et al., 2022), adjusted to the spe-
cific simulation day and month. To model air pollution within the target
domain, the PMCAMx chemical transport model is applied, while the
Particulate Source Apportionment Technology (PSAT) algorithm
(Wagstrom et al., 2008) determines the contributions of individual
sources to pollutant concentrations. Additional details are available in
the study of Siouti et al. (2022).

In the first application of SmartAQ, the city of Patras, Greece, was
used as a test case. The outer domain, which covers all Europe, has 36 x
36 km? horizontal spatial resolution and covers a region of 5400 x 5832
km?, while the three nested domains, which are parts of Greece, regions
of 276 x 276,114 x 114 and 36 x 36 km?, respectively (Fig. 1). In the
vertical, PMCAMx uses 14 layers up to 10 km for all the modeling do-
mains. The surface layer extends approximately up to 50 m.

2.1.2. Meteorology
Apart from the WRF predictions used in the SmartAQ system, we
used real-time meteorological observations from a weather station
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Fig. 1. (a) Overview of the ML methodology and (b) the study area.
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located at the University of Patras in Rio as input to the ML model. The
station provides hourly measurements of the wind speed, wind direc-
tion, and rainfall. At each hour, the measurements from the meteoro-
logical station at the University of Patras were paired with every grid cell
and used as time varying predictors for the whole domain. These vari-
ables complemented the spatially resolved meteorological information,
deriving from WRF, which was already embedded in the SmartAQ
inputs.

2.1.3. Land use features

Although the TNO emissions inventory is already used as an input to
SmartAQ, we also supplied spatial indicators of land use and emissions
directly into the ML model. The ML does not have access to the internal
information of the SmartAQ system and these spatially varying yet
temporally invariant variables act as stable priors that guide the
SmartAQ+ correction especially where sensor coverage is sparse.

The ML model’s input includes information for each grid cell
regarding its land use, population distribution, biomass burning and
cooking emissions, and the percentage of the total road surface (Fig. 1).
The United States Geological Survey (USGS) geographical datasets for
topography and land use, which are also inputs to WRF, were utilized to
classify the land use within the modeling domain. The land is catego-
rized into sea, urban, agricultural, rangeland, forest, and uncategorized
areas.

The population distribution was calculated based on population data
provided by the European Union. The results were derived from the most
recent database, the Eurostat census grid 2021 (2021). The data pertain
to 2021 and are available in a 1 x 1 km? grid.

Residential biomass burning emissions at spatial resolution of 1 x 1
km? for the Patras area have been estimated by Siouti et al. (2023a).
Their spatial distribution is based on the density of houses in the
modeling domain of Patras. Cooking emissions are spatially distributed
based on the density of the restaurants in each 1 x 1 km? grid cell of the
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modeling domain (Siouti et al., 2021).

The percentage of total road surface within each 1 x 1 km? grid cell
was quantified using ArcGIS Explorer Desktop (ESRI). Road transport
emissions are then spatially allocated according to this road surface
fraction.

2.1.4. Low-cost PMj 5 sensor network

A low-cost sensor network consisting of 29 Purple Air devices (Pur-
pleAir PA-II) was used to provide the PMj 5 concentration at fixed lo-
cations in the study area (Fig. 2). Thirteen devices were located in urban
cells, thirteen in uncategorized, and three in rangeland cells (Table S1).
We used measurements from January 1, 2021, to December 31, 2023 for
this study. All measurements were averaged to 1 h. Each device con-
tained two identical sensors (PMS5003). We used the average of the two
sensors of each device. In cases where one of the sensors was constantly
reporting extreme values (e.g. above 1000 pg m~3) or too low (e.g. 0.5
Hg m~3) that sensor was excluded and the measurements of the other
were used. The PMj 5 sensor’s measurements were corrected using the
methodology suggested by Kosmopoulos et al. (2020). Their study
suggested a linear calibration formula that reduces the measured PM> 5
by approximately half. Using this correction reduced the hourly PM; 5
relative mean error to 18 % (1.1 pg m~>), with negligible bias.

This calibration was applied uniformly to all sensors for the full study
window (January 1, 2021-December 31, 2023), and any future
SmartAQ+ deployment should likewise ingest corrected sensor mea-
surements to operate as intended.

2.2. Data processing

The output of SmartAQ was free of missing values, requiring no
further imputation or processing. Temporal features, including the day
of the week (represented as integers 1-7), the month (1-12), and the
hour of the day (0-23), were added to the dataset to account for
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Fig. 2. Low-cost sensor network in Patras.The 19 sites used for training/validation and the 10 sites used for testing are shown.
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potential temporal variations in PMs 5 concentrations. The above fea-
tures were included as integers because the tree-based model can cap-
ture cyclic structure through splits on these variables.

Weather data processing involved converting wind direction, origi-
nally measured in degrees, into eight categorical bins corresponding to
cardinal and intercardinal directions. These categories were defined as
North, Northeast, East, Southeast, South, Southwest, West, and North-
west, enabling the incorporation of wind direction as a categorical
variable in the model.

The contribution of cooking, biomass burning, and roads to the total
emissions in individual computational cells ranged from zero to 17 %, 2
%, and 6 %, respectively. Population density values spanned from 0 to
11,809 inhabitants per square kilometer. These features were inserted as
float values to let the ML algorithm choose the optimal split threshold.
Additionally, land-use classifications were assigned integer labels cor-
responding to different categories: 0 for uncategorized, 1 for sea, 2 for
urban, 3 for agriculture, 4 for rangeland, and 5 for forest.

No imputation or specific handling of missing values was performed
for any type of data, as the ML model manages missing data during
training.

2.3. Machine learning model

Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) is
an advanced implementation of gradient-boosted decision trees that
handles large and complex datasets (Ma et al., 2020). Its ability to build
an ensemble of decision trees sequentially, where each new tree focuses
on correcting the errors of the previous ones, makes it particularly
effective in capturing complex patterns and relationships within the
data. XGBoost is well-suited for the diverse and multifaceted features of
the present application because its tree-based structure naturally han-
dles different types of features without the need for extensive pre-
processing or scaling. This allows the model to effectively capture the
non-linear interactions between variables, such as the impact of land
use on PMs 5 levels during specific hours or the seasonal effects of
biomass burning.

XGBoost demonstrates strong resilience to noisy and missing data,
which is a common challenge when working with low-cost sensors that
may occasionally provide unreliable measurements. Its built-in mecha-
nisms for handling missing values ensure that the model remains stable
even when some sensor data is unavailable (Liu et al., 2021). Under-
standing the relative impact of different factors on PMy 5 predictions
produced by XGBoost is possible though the quantification of the
importance of each feature.

We used XGBoost with a regularizing hyperparameter setting guided
by preliminary tuning on the training data, using the mean error as the
loss function. The final configuration used 300 trees with a learning rate
of 0.1, a maximum depth of 10, strong stochastic regularization through
row subsampling of 0.2 and column subsampling per tree of 0.1, and L1
and L2 penalties of 1.0 and 0.8 to shrink complex trees and promote
sparsity. All remaining parameters were left at their defaults.

During the development of SmartAQ+, we evaluated several other
ML algorithms, including RF (Svetnik et al., 2003), Multi-Layer Per-
ceptron (MLP), CatBoost, and Light Gradient Boosting Machine
(LightGBM) (Ke et al., 2017). XGBoost consistently outperformed them
in terms of prediction accuracy and computational efficiency. Random
Forest, for instance, had slower convergence and lower accuracy. MLPs
required extensive tuning, while CatBoost and LightGBM were less
effective.

The trained XGBoost model in SmartAQ-+ operates every hour using
the most recent PMj 5 predictions from the SmartAQ system, the latest
PM, 5 measurements from the sensor network, and the rest of the vari-
ables to refine SmartAQ’s prediction for each grid cell at the present-
time (Fig. 1).
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2.4. Use of sensor inputs in the ML model

Only the 7 nearest sensors and a complementary sensor located at a
background site (Platani) are selected for input to the ML model when
processing data for estimating the PMj 5 concentration at each specific
cell of the grid. If the nearest sensor is more than 4 km away, it is
excluded from the input data. This exclusion ensures that the model only
processes sensor data that is geographically relevant.

By using only the nearest sensors, the model better reflects the real-
time conditions of the target cell, accounting for local environmental or
operational factors that may influence the data. This approach also re-
duces the risk of irrelevant or outdated information from distant sensors
skewing the model’s predictions. If fewer than 7 sensors fall within the 4
km radius, the model uses only the available sensors, forcing itself to rely
more on the other input variables. In essence, the latter methodology
helps SmartAQ- form its estimations at remote areas, where no sensor
data are available and forces the model to rely more on the SmartAQ
predictions and the background sensor for these areas.

2.5. Training and validation

We trained the SmartAQ+ model using data from 19 measurement
sites (65 % of the total available sites), located at different cells, from
January 1, 2021, to December 31, 2022. This group of sites is called
training-validation group hereafter (Table S1). PMy s measurements
from this sensor group, from January 1, 2023, to December 31, 2023,
were used for evaluation.

Additionally, a sub-network of 10 sites (Table S1) was selected as a
complementary test set, called testing group hereafter. These devices
were installed during 2022 in the area and were better suited for test
purposes, because of the limited training data they could provide. They
were hidden from the model at the training phase and their location
differed from the location of the training-validation group. We used the
testing group to provide the PM, 5 concentration as an extra step in
assessing the model’s performance in “new” locations during 2023. For
testing group of sensors, measurements from January 1, 2023, to
December 31, 2023 were used.

For the evaluation of the present-time capability we executed
retrospective simulations with model outputs at an hourly time step for
the entire year 2023. We stored the resulting hourly concentration fields
for the full annual cycle and compared the model values at the sensor
locations with the temporally aligned corrected measurements.

2.6. Performance metrics

The mean error (ME), fractional bias (FBIAS), and fractional error
(FERROR) were used to evaluate the model performance:

1 N
ME ==Y "|P, -0 1
Ni:ll Ol ()
2 (P, —-0)
FBIAS:7§ A 2
NG (Pi+0) 2
2 &L [P - 0
FERROR=1 ) 3
N 2 (P +0) @)

where, N is the total number of measurements, P; is the predicted con-
centration and O; is the corresponding reference concentration.

Based on the study by Morris et al. (2005), PMs 5 model performance
for daily average values is considered excellent for FBIAS < +15 % and
FERROR < £35 %, good for FBIAS < +30 % and FERROR < +50 %,
average for FBIAS< +60 % and FERROR < +75 %, while there are
fundamental problems in the modeling system for higher FBIAS and
FERROR.
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The European Union has established a daily average limit value for
PM, 5 concentrations at 25 pug m 3, which should not be exceeded more
than 18 times per calendar year by 2030 (European Parliament, 2024).
We assessed the performance of the SmartAQ and SmartAQ+ models in
identifying days when PMj 5 concentrations exceeded the EU-defined
limit somewhere in the urban area. For each location where a sensor
existed, we compared the number of times the model-predicted and
sensor-observed daily average PMy s levels surpassed the 25 pg m™>
threshold. This analysis aimed to determine the precision and reliability
of both SmartAQ and SmartAQ+ systems in capturing exceedance
events, which is critical for ensuring compliance with regulatory stan-
dards and informing public health advisories. A True Positive (TP) event
is when both the observed and the predicted daily average PMs 5
exceeded 25 pg m~3. A False Positive (FP) when the model predicted
PM, 5 above the threshold, but the observed PM, 5 concentration was
below it. Under the same reasoning, we considered the True Negative
(TN) and the False Negative (FN) cases. We computed the True Positive
Rate (TPR) and False Positive Rate (FPR) of each model based on the
following equations:

TP

TPR=Tp T N Q)
FP

FPR = TN ®

Practically, TPR is the proportion of days where the model correctly
identified PMy 5 exceedance when the observed concentration was
above the 25 pg m 3 threshold and FPR is the proportion of days where
the model incorrectly predicted PMy 5 exceedance when the observed
concentration was below the threshold.

3. Results
3.1. Performance in predicting average monthly patterns

We first used the monthly average predicted and measured PMj; 5
concentrations for evaluating SmartAQ+ for the test period (2023).
Fig. 3 displays the average FERROR and FBIAS of the SmartAQ+ and
SmartAQ models for 2023 for each location. Fig. 4 illustrates the mean
monthly FBIAS of SmartAQ and SmartAQ+ at selected locations.
Table S2 presents the SmartAQ-+ evaluation metrics at each location.
Based on the average FERROR and FBIAS for 2023, SmartAQ+ was
excellent for 7 training-validation sites, good for 7, and average for 5. As
far as the hidden 10 test sites are concerned, SmartAQ-+ was excellent
for 5, good for 2 and average for 3. The ME of SmartAQ+ was 2.1 + 1 pg
m 2 at the training-validation sites and 2.3 + 1 pg m~> at the 10 test
sites. FBIAS was 9 + 23 % and FERROR 34 + 13 % at the training-
validation sites and approximately the same at the test sites. There
were two sites (Nafpaktos, Ovrya) where SmartAQ+ performance in
terms of FBIAS and FERROR was significantly worse than the rest.
Nafpaktos is a small city approximately 10 km from Patras (38° 23'
39.0588" N, 21° 50’ 4.9488" E). The absence of nearby low-cost sensors
for training had a negative impact on the performance of the SmartAQ-+
model in that small city (FERROR = 59 %, FBIAS = 59 %). Ovrya is a
suburban location approximately 7 km from Patras (38° 11’ 26.844" N,
21° 43' 45.12" E). Its distance from the core of the low-cost sensor grid
played a role, because the SmartAQ+ model relied on the SmartAQ
model more and inherited its errors. SmartAQ’s FERROR was 73 % and
FBIAS 51 %. SmartAQ+ decreased these errors (FERROR = 70 %, FBIAS
= —32 %) but its performance remained worse than the other sites. Out
of the four sites affected by intense biomass burning, SmartAQ+ was
excellent for one, good for two, and average for the remaining one.
SmartAQ+ was excellent for 3 urban sites, good for 5, and average for
the remaining 4 (Fig. S1). SmartAQ+ performance was classified as
excellent and good for the two sites with intense cooking emissions.

SmartAQ+ performed better than SmartAQ at all training-validation
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Fig. 3. (a) SmartAQ+ and (b) SmartAQ evaluation using FERROR (%) versus
FBIAS (%) of monthly PM, 5 concentrations for all sites in Patras during 2023.
Circles denote training sites and squares denonte testing sites.

and test sites (Table S5) based on monthly-averaged values. SmartAQ
was good for 3 sites, average for 20, and below average for 6 (Fig. 3).

The average monthly FBIAS (Fig. 4) shows that SmartAQ+ reduced
SmartAQ FBIAS by approximately 100 % for most months and sites, with
the largest gains (Lagoura, Paralia, Mesa Agyia South, City Center) at the
urban locations and limited improvement at the remote site of
Nafpaktos.

We used the mean daily values for evaluating SmartAQ+ at all lo-
cations for January, April, July, and October 2023 (Table S3, Table S4).
We selected January, April, July, and October 2023 to represent one
month per season—winter, spring, summer, and autumn, respectively,
as we expect different patterns and influencing factors across seasons.
Fig. 5 shows average PM3 5 predictions by the SmartAQ and SmartAQ+
models for January, April, July, and October 2023.

In January, SmartAQ+ estimated a mean PM; 5 concentration of 16
pg m~ at an area including the center of Patras and its east and west
suburbs. The mean measured PM, 5 concentrations of sensors located
inside that area was 13 pg m~>. SmartAQ predicted an average of 27 pg
m ™2 at the urban core and 6 pg m™ at the suburbs. The sensors located
in the city center (New Port of Patras, Psila Alonia, Kypseli, Germanou,
City Center, Trion Navarchon, Agios Dionysios) measured on average
15 pg m~3. SmartAQ+ produced more accurate concentration estimates
within the urban core, whereas SmartAQ consistently overpredicted the
PM, 5 concentrations. Also, SmartAQ-+ yielded correct estimates for
suburban areas, in which the SmartAQ system underestimated PMy s.

For April, SmartAQ+ and SmartAQ predictions differ by a factor of
two (~10 pg m~>) near the city center and the south suburbs. The
average estimated concentrations of SmartAQ+ for the urban core was
11 pg m~3. Sensors in the urban core measured on average 8 pg m™°.
SmartAQ+ had a lower average FERROR (18 %) than SmartAQ (37 %) at
these locations, based on sensor measurements. SmartAQ+ estimates
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differed from SmartAQ in background sites by an average of 4 pg m™>
(30 %). The sensor at Platani (background site) measured an average of
4 pg m~2 for April, while SmartAQ- estimated 5 pg m™~> and SmartAQ 9
m > In summary, SmartAQ+ halved SmartAQ’s overestimation both
within the urban core and at background sites, reducing the corre-
sponding biases by 50 %.

For July, SmartAQ+ estimated an average of 8 pg m™> in the urban
core and SmartAQ 10 pg m~>. The sensors inside that area measured on
average 7 pg m . At background sites, the predicted concentrations by
the two models differ by 5 pg m™3, with SmartAQ+ estimating on
average 7 g m . The sensor at Platani measured on average 5 g m 3.
At lower concentration levels in July, SmartAQ+ markedly reduced
SmartAQ’s positive bias, decreasing the urban-core FERROR from 23 %
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to 16 % and the background-site FERROR from 43 % to 28 %.

For October, SmartAQ+ estimated an average PM; 5 concentration of
8 pg m 2 at locations near the city center, where sensors measured 7 pg
m 3. Similar to July, the SmartAQ system overestimated PMjy 5 with an
average predicted value of 11 pg m~>. At background sites, SmartAQ+
estimated on average 5 ug m > and the sensor at Platani measured 3 pg
m~3. SmartAQ predicted an average of 9 ug m~° in Platani.

3.2. Performance in predicting average daily patterns

Fig. 6 illustrates the average diurnal PMj 5 profiles for January 2023
at 6 selected sites (5 urban and 1 rural). Four of the sites (Mesa Agyia
South, City Center, Lagoura, and Paralia) are located in Patras, where
the majority of the study’s sensors exist. Psathopirgos and Nafpaktos are
locations 15 and 18 km away from Patras. Mesa Agyia South and Naf-
paktos are testing sites and the rest are training sites.

During January, elevated PMj 5 concentrations were measured by
the sensors at all five selected urban sites after 17:00. This is due to
intense biomass burning during winter in Patras (Kaltsonoudis et al.,
2025). SmartAQ underestimated the concentrations during the after-
noon and evening by a factor of 2. SmartAQ+ had a better performance
at the four urban sites during the same hours, decreasing the FERROR of
SmartAQ from 61 % to 23 %.

Fig. 7 illustrates the average diurnal PM; 5 profiles for July 2023 at
the same sites. Except for Nafpaktos and Psathopirgos, SmartAQ over-
estimates PMy 5 concentrations during all hours by 2-4 g m™. At
Psathopirgos there is an underestimation of 5-7 pg m™> by SmartAQ.
SmartAQ+ manages to mitigate these biases with a mean error of 1-2 pg
m~? at all sites, except for Nafpaktos. At Nafpaktos, SmartAQ+ over-
estimates PMy 5 by 6 pg m >,

3.3. SmartAQ + performance in predicting daily PM3 5 limit exceedance

We evaluated the SmartAQ and SmartAQ+ models in detecting ex-
ceedance events by comparing their predictions with sensor measure-
ments at training-validation and testing sites together. A TP occurred
when both predicted and observed values exceeded the limit, while an
FP occurred when only the model did.

Based on the sensors’ measurements, the daily-average PMy 5 limit
(25 pg m~>) during 2023 was exceeded for 10 or more days at 12 of the
study’s sites (Table S6). At these sites, the total number of exceedances
was 190. SmartAQ+ identified correctly 132 events and SmartAQ 34. On
the other hand, SmartAQ+ had 67 false-positive cases and SmartAQ
152. SmartAQ+ missed 56 events and SmartAQ 134. Fig. 8 illustrates the
TPR and FPR values of SmartAQ and SmartAQ-+ at the 12 most polluted
locations. SmartAQ+ exhibits significantly better TPR and FPR rates at
all locations.

We selected the two most polluted locations (Kypseli and Lefka) and
we examined the hourly-averaged measurements and model predictions
during the exceedance days (Fig. 9). SmartAQ+ showed better perfor-
mance in capturing the PMy 5 higher concentrations (>25 pg m~3) at
both sites. At Lefka, SmartAQ+ slightly underestimated the PM; 5 levels
(Fig. 9d).

We also inspected the average observed and predicted PMy 5 con-
centration during Fat Thursday (February 16) when people grill and
feast on large amounts of meat, emitting significant amounts of cooking
organic aerosol across the entire city (Kaltsonoudis et al., 2017). Fig. 10
displays the average PMsys on that day as predicted by SmartAQ+,
SmartAQ and measured by multiple Purple Air sensors. The measured
concentrations were above 35 pg m > at a large area covering the city
center and the outskirts. SmartAQ estimated lower concentration values
by 5 ug m~> compared to the observed ones at a relatively smaller area
(Fig. 10b) than the actual. SmartAQ+ improved the prediction by
expanding the affected area (Fig. 10a) but the predicted concentrations
were lower than the observed by 15-25 % at the suburbs of the city. The
presence of real-time sensor measurements across the city played a
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SmartAQ+

Fig. 5. Predicted monthly-average PM, 5 (ug m~>) by SmartAQ and SmartAQ+ for January, April, July, and October 2023.

significant role in adjusting the SmartAQ prediction by the SmartAQ+
system during this day. Finally, both models performed well (within 2
pg m~3) in predicting the average PMy s concentration (28 pg m™>) at
Nafpaktos.

3.4. Feature importance

We performed a SHapley Additive exPlanations (SHAP) analysis
(Lundberg and Lee, 2017) on the SmartAQ+ model across the 36 x 36
km? geographical domain with a 1 x 1 km? resolution. SHAP ranks the
ML input features by how much they move a prediction away from a
baseline. It borrows Shapley values from game theory to fairly split the
total prediction difference among the features, so each feature’s score
represents its relative importance.

The SHAP analysis was conducted for every grid cell using all

available data test data from 2023. The feature importances varied
depending on the presence of a reference sensor within a 4 km radius
(Fig. 11). To investigate this effect, we categorized the SHAP impor-
tances into two groups: (i) grid cells with at least one nearby sensor
within 4 km and (ii) grid cells without any nearby sensor in this radius
(Table S7). The importance of the SmartAQ prediction was 21 % at cells
where nearby sensors existed and 53 % at cells with no nearby sensor.
The importance of land-use variables was 19 % for cells with nearby
sensor(s) and 35 % for cells without nearby sensors. Similarly, the
importance of sensor measurements was 43 % for cells with nearby
sensors and zero for cells without.

4. Discussion and conclusions

This study developed and evaluated SmartAQ-+, a hybrid approach
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that integrates a CTM (SmartAQ) with ML to enhance the accuracy of
high-resolution PMj 5 estimations at the present time (or the past). Data
from calibrated low-cost PMs 5 sensors, one weather station, and land-
use variables, helped SmartAQ+ improve the accuracy of PMy 5 esti-
mations at a 1 x 1 km? resolution.

Overall, SmartAQ+ performed significantly better than SmartAQ,
especially during the winter, with substantial improvements in both
error and bias metrics. At the training sites, SmartAQ+ reduced the
average FERROR from 62 % to 38 % in winter and from 49 % to 21 % in
summer. FBIAS also decreased in winter (from 38 % to 33 %) and in
summer (from 39 % to 3 %). At the test sites, the average FERROR
dropped from 74 % to 40 % in winter and from 55 % to 33 % in summer.
SmartAQ+ showed a lower FERROR compared to SmartAQ at nearly all
locations. For FBIAS, SmartAQ+ showed improvements at 12 out of 29
locations in winter and at 24 out of 29 locations in summer, highlighting
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its more robust performance during the summer.

Beyond general improvements, SmartAQ+ better characterized
spatial variability in air pollution fields. This is evident in the seasonal
maps, where SmartAQ+ consistently offered more localized and topo-
graphically relevant predictions. This difference is because SmartAQ+
integrates sensor data from multiple locations, including nearby areas,
to refine its predictions. The SmartAQ model is unaware of the low-cost
sensor measurements.

SmartAQ+ appears to rely more on SmartAQ predictions in regions
with sparse or no sensor coverage, such as marine and rangeland areas
compared to areas with available nearby sensor data. This pattern is
particularly evident in Fig. 5b, where SmartAQ+ and SmartAQ display
agreement in isolated locations while diverging in urban-adjacent cells.

SmartAQ+ correctly identified more daily PMj 5 limit exceedance
events and produced fewer false positives and missed events compared
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to SmartAQ. At the most polluted locations (Kypseli and Lefka),
SmartAQ+ better captured high PMj 5 concentrations and their tem-
poral variations, though it slightly underestimated levels at Lefka.
During a major cooking event in Patras, SmartAQ+ improved spatial
predictions but underestimated concentrations in the outskirts. Both
models performed well in less polluted areas. The improved present-
time fields and the better identification of days above the European
daily PMy 5 limit support operational uses in urban air quality man-
agement. City services can use the 1 x 1 km? maps to target advisories
and responses at the neighborhood scale and to inform early alerts for
vulnerable populations. The exceedance detection skill can assist regu-
latory compliance checks and the same fields can guide the design and
expansion of sensor networks by revealing persistent gaps in coverage.

The integration of real-time sensor data and land-use features into
SmartAQ+ improved the SmartAQ predictions of PMj 5 concentration
fields. However, when comparing the two systems directly, it is essential
to consider that SmartAQ relies on chemical transport modelling
without real-time measurements or historical data.

SmartAQ+ performance depends heavily on the availability of sensor
input. In remote areas like Nafpaktos and Ovrya, where the number of
nearby low-cost sensors was limited, the model relied on SmartAQ’s
predictions and inherited its biases. This finding is further supported by
the SHAP analysis, where the SmartAQ prediction was the dominant
feature in data-sparse zones. A practical use of SmartAQ+ is to identify
locations where new sensors would yield the largest reduction in un-
certainty and to guide short term deployments that supply the references
needed to evaluate and refine the corrections that are learned in sensor
covered areas and then projected to unsampled cells.

The decision to constrain the model to seven sensor inputs per grid
cell, including the Platani background site as the eighth sensor, was
made to prevent a small group of nearby devices from dominating the
feature space. We did not examine alternative configurations for the
number of neighboring sensors or the 4 km distance threshold and future
work should assess the effect of fewer sensors or adaptive radii on per-
formance under different coverage regimes.
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Fig. 10. Average PM; s on February 16, 2023 as predicted by a) SmartAQ-, b) SmartAQ and c¢) measured by multiple Purple Air sensors. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Even after applying standard corrections, low-cost sensors can still
drift or react differently under extreme pollution levels. That residual
noise might mislead the machine-learning model, especially during
sudden spikes, so it is worth exploring more dynamic calibration or
online bias correction in future work. Training on two years of Patras
data and testing on the third could mean the model learned some city-
specific weather or seasonal patterns. To be sure SmartAQ+ works
elsewhere (or under different climate years), it would help to train and
validate across multiple cities or longer time spans. The algorithm is
expected to transfer best to cities with similar emission patterns and
concentration ranges. Application in regions with substantially higher
pollution can lead to larger bias because extrapolation beyond the
training domain is not reliable. Preliminary tests in Athens, the capital of
Greece, indicate that the model yields reasonable present-time estimates
there. These tests are exploratory and will be analyzed in future work.

We evaluated general exceedance counts and a couple of cooking-
related spikes but have not yet assessed how SmartAQ+ handles rare
weather extremes. Future tests should include those events to confirm
the model stays reliable when conditions are most challenging.

While SmartAQ+ performs well in present-time PM, 5 estimation, its

11

architecture inherently ties it to historical observations and short-term
trends. Attempting to extend its predictions to longer lead times could
likely result in propagation of biases from SmartAQ due to errors in the
underlying meteorological forecasts, emissions, or simulation of pro-
cesses. Furthermore, adapting the ML framework to account for other
pollutants, predictions of which are already produced by SmartAQ,
would significantly broaden its utility in air quality forecasting. Lastly,
implementing source apportionment techniques within the ML pipeline
might suggest corrections to the SmartAQ source apportionment results.
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