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Abstract

Epiretinal membrane (ERM) is a common retinal pathology associated with progressive
visual impairment, requiring timely and accurate assessment. Recent advances in artificial
intelligence (AI) have enabled automated approaches for ERM detection, segmentation, and
postoperative best corrected visual acuity (BCVA) prediction, offering promising avenues
to enhance clinical efficiency and diagnostic precision. We conducted a comprehensive
literature search across MEDLINE (via PubMed), Scopus, CENTRAL, ClinicalTrials.gov,
and Google Scholar from the inception to 31 December 2023. A total of 42 studies were
included in the systematic review, with 16 eligible for meta-analysis. Risk of bias and
reporting quality were assessed using the QUADAS-2 and CLAIM tools. Meta-analysis
of 16 studies (533,674 images) showed that deep learning (DL) models achieved high
diagnostic accuracy (AUC = 0.97), with pooled sensitivity and specificity of 0.93 and 0.97,
respectively. Optical coherence tomography (OCT)-based models outperformed fundus-
based ones, and although performance remained high under external validation, the
positive predictive value (PPV) declined—highlighting the importance of testing model
generalizability. To the best of our knowledge, this is the first systematic review and meta-
analysis to critically evaluate the role of AI in the detection, segmentation, and postoperative
BCVA prediction of ERM across various ophthalmic imaging modalities. Our findings
provide a clear overview of current evidence supporting the continued development and
clinical adoption of AI tools for ERM diagnosis and management.

Keywords: artificial intelligence; deep learning; epiretinal membrane; detection; segmentation;
prediction; retinal imaging; ophthalmology

1. Introduction
Epiretinal membrane (ERM), alternatively known as cellophane maculopathy or mac-

ular pucker, can be defined as a thin, semi-transparent layer of avascular tissue that covers
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the retina’s inner surface, overlying the internal limiting membrane (ILM), mainly in the
macula area [1]. The presenting symptoms usually include distorted central vision, such as
metamorphopsias, which worsen as the thickness and contractility of the ERM increase [2].
The prevalence of ERM ranges between 6% and 11.8% in Western populations and 2.2% to
7.9% in Asian populations [3], with increasing age being the most important risk factor [4].
Although the majority of the patients with ERM remain asymptomatic and no intervention
is required, surgical treatment, such as pars plana vitrectomy with ERM and ILM peeling,
may be required in cases of significant visual impairment affecting quality of life [3].

ERMs are typically classified as either idiopathic or secondary, with the former being
more common in adults over 50 years old, and the latter developing following inflamma-
tion, trauma, or previous surgery [5]. The main pathophysiological mechanism of ERM
development involves the transdifferentiation of precursor cells, such as retinal glial cells,
hyalocytes, retinal pigment epithelial (RPE) cells, and fibroblasts, into myofibroblasts. These
transdifferentiated cells migrate to the inner retinal surface and secrete an extracellular
matrix containing collagens I–VI [4].

Despite the high prevalence of ERM, diagnosis, monitoring, and management remain
challenging. Technological advances in ophthalmic imaging techniques, including optical
coherence tomography (OCT) and fundus photography, have contributed to the early diag-
nosis and monitoring of ERM. OCT is a non-contact, non-invasive imaging technique that
generates cross-sectional tissue images of high resolution, enabling detailed visualization
of all retinal layers and macular architecture. The ERM on OCT appears either as irregular
wrinkling on the retinal surface or as a hyperreflective layer beneath the ILM [6]. Another
advantage of OCT is the ability to assess features that could be used as prognostic factors
of postoperative visual outcomes, including the central foveal thickness, the integrity of the
ellipsoid zone and cone outer segment, the photoreceptor outer segment length, and the
integrity of RPE [7]. Therefore, OCT is considered the gold standard for ERM diagnosis and
for monitoring disease progression and postoperative outcomes. Another useful imaging
modality that demonstrates retinal abnormalities in two dimensions is fundus photography.
It is useful in identifying ERM characteristics, such as retinal folds, although it lacks the
detailed structural analysis provided by OCT [8].

In recent years, artificial intelligence (AI) has introduced a new era in healthcare
through early disease detection, personalized treatment planning, and predictive analytics.
Advances in Deep Learning (DL) and the availability of large datasets have enabled AI to
enhance medical imaging in various specialties, including Ophthalmology [9]. In this field,
AI applications have been developed for the diagnosis and management of retinal disorders,
ocular surface diseases, and glaucoma [10]. Modern AI algorithms are computational
mathematical models that learn from data samples to recognize patterns. By training
on the datasets provided, these algorithms adjust their parameters to predict outcomes
or categorize new data based on previously observed patterns [11]. Machine learning
(ML)—a subfield of AI—as well as DL and convolutional neural networks (CNNs), have
gained significant attention over the past decade. CNN is an advanced type of artificial
neural network (ANN) architecture that automatically extracts features from the input
images. DL architectures, such as CNNs, excel in complex image analysis tasks because they
have the capacity to recognize and generate images by combining convolutional, attention,
and pooling layers to hierarchically detect and extract image features. Consequently, their
application in medical imaging can assist in the diagnosis of many diseases [12].

The selection and the quality of the datasets used for the development of AI models are
of paramount importance. Diverse and large datasets are necessary for robust training and
evaluation of AI models. In the literature, publicly available datasets such as MESSIDOR,
OCTID, and the RFMiD are widely used in retinal image analysis. In addition to internal
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validation datasets, external validation has been advocated as necessary and may improve
the validity of the model, as it demonstrates higher methodological rigor and is more likely
to produce clinically generalizable results [13].

In this systematic review, we summarize the current applications of AI in ERM assess-
ment and quantify the performance of AI models. To the best of our knowledge, this is the
first review to examine AI applications in ERM diagnosis, segmentation, and postoperative
best corrected visual acuity (BCVA) prediction, providing a broad perspective on AI’s role
in ERM management. To complement this review, we also conducted a meta-analysis to
quantitatively synthesize the diagnostic performance of AI models for ERM detection across
different imaging modalities and validation strategies. While current results are promising,
further research is needed to enhance model performance and address existing limitations.

2. Materials and Methods
2.1. Eligibility Criteria

This systematic review and meta-analysis were aligned with Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) recommendations [14], with the
PRISMA checklist provided in Supplementary Table S1. To clarify the research question and
define the inclusion and exclusion criteria, a protocol was developed based on the Popula-
tion, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework [15] and
was registered in the International Prospective Register of Systematic Reviews (PROSPERO;
registration number CRD42024495723). This review included studies that used OCT or
fundus images from adult human participants, applying AI techniques for ERM detection,
segmentation, and postoperative BCVA prediction. Commonly used metrics to report
the effectiveness and performance of the AI-based models included accuracy, specificity,
sensitivity, positive predictive value (PPV), negative predictive value (NPV), F1 score, Dice
coefficient, and the area under the receiver operating characteristic (ROC) curve (AUC).
Systematic reviews, meta-analyses, narrative reviews, scoping reviews, opinion pieces,
surveys, editorials, commentary letters, case reports, book chapters, conference abstracts,
animal or in vitro studies, studies in children and adolescents, and non-English articles
were excluded. Preprints and non-peer-reviewed studies were also excluded. No specific
comparator was used, as the review included multiple AI systems for ERM evaluation.

2.2. Information Sources, Search Strategy and Study Selection

The systematic literature search on Medline (via Pubmed), Scopus, CENTRAL
databases, ClinicalTrials.gov, World Health Organization’s (WHO) International Clinical Tri-
als Registry Platform (ICTRP) and Google Scholar was conducted up to 31 December 2023.
All retrieved articles were imported into EndNote (Clarivate PLC, London, UK), which
was used for the initial screening phase, primarily to remove duplicates. Two independent
authors (D.M. and P.M.) screened titles and abstracts for eligibility, with discrepancies
resolved by consensus after discussion. Full-text screening was also performed indepen-
dently by the same reviewers (D.M. and P.M.), and only reports without overlapping
populations were included. Disagreements were resolved by a third reviewer (E.M.).
A snowball search was not conducted.

2.3. Data Extraction

Data extraction was performed by two independent authors (D.M. and P.M.) using
a predefined Microsoft Excel spreadsheet. Each study was reviewed, and a customized
form was completed with the corresponding predefined data. Specifically, extracted data
included study details (author, year, country); dataset and annotation methods (disease
type, dataset source, imaging modality, sample size, reference standard); AI model char-
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acteristics and validation strategy (AI task, AI type, AI architecture, explainable AI (XAI),
internal validation method, external validation); and model performance evaluation metrics
(accuracy, specificity, sensitivity, PPV, NPV, AUC for both internal and external test sets).
Disagreements regarding the extracted items were resolved by a senior reviewer (E.M.).

2.4. Quality Assessment

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) [16] and the
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [17] tools were used to
assess the risk of bias in the included studies, following full-text screening. QUADAS-2 is
an 18-item scale divided into four categorical criteria: patient selection, index test, reference
standard, and flow and timing. Each domain is evaluated for risk of bias, with the first
three domains also assessed for applicability concerns. The CLAIM checklist consists
of a structured set of 44 items designed to evaluate the completeness and transparency
of claims made in the studies. The combination of these tools facilitated a reliable and
standardized evaluation of study quality. Two reviewers (P.M. and A.S.) performed the
quality assessment independently, and any conflicts were resolved through consensus with
a senior investigator (E.M.).

2.5. Statistical Analysis

We performed a meta-analysis to quantify the diagnostic performance of DL al-
gorithms for the detection of ERM. For every included study, we reconstructed the
2 × 2 contingency table of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). From these data, we calculated study-specific sensitivity, speci-
ficity, PPV, NPV, accuracy, and the diagnostic odds ratio (DOR).

Pooled point estimates and 95% confidence intervals (CIs) were derived using a
random-effects logistic regression model for proportions, fitted on the logit scale. This
bivariate random-effects model accounts for both within- and between-study variability.
For the DOR, we used a random-effects inverse-variance model with restricted maximum
likelihood estimation. Between-study heterogeneity was evaluated using τ2 (tau-squared)
and the I2 statistic. An I2 value between 25% and 50% was interpreted as indicating low to
moderate heterogeneity, whereas values exceeding 75% reflected substantial heterogeneity.

To evaluate global diagnostic performance, we constructed a hierarchical summary
receiver operating characteristic (SROC) curve. We report the AUC as well as the nor-
malized partial AUC (pAUC), which restricts the analysis to the observed range of
false-positive rates.

Subgroup analyses were pre-specified to explore potential sources of heterogeneity.
These included a comparison of studies based on imaging modality (fundus photography
versus OCT) and an assessment of whether the DL models were evaluated using external
validation datasets versus internal-only evaluations.

All analyses were conducted in R (v4.4.0; R Core Team 2024) using the mada and metafor
packages. A two-sided p-value of less than 0.05 was considered statistically significant.

3. Results
3.1. Study Selection

We conducted a systematic search of the literature using a predefined search strat-
egy from the inception to 31 December 2023 (Figure 1). The database search identified
468 citations: PubMed (n = 76), Scopus (n = 392), Central (n = 6), ClinicalTrials (n = 1), and
WHO ICTRP (n = 1). After automatic duplicate removal by EndNote, 402 citations remained
for title and abstract screening. Of these, 337 were excluded by the two authors (D.M. and
P.M.), leaving 65 studies for full-text screening. A supplementary gray literature search
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using Google Scholar identified an additional 179 citations. Finally, following double inde-
pendent full-text screening, 42 studies [1,2,5–7,10,18–53] were included in the systematic
review and 16 studies [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51] in the meta-analysis.

Figure 1. PRISMA flowchart.

3.2. Study Quality Assessment

The results of the QUADAS-2 assessment are presented in Figure 2. Overall, the risk
of bias among the included studies was considered low. In greater detail, within the patient
selection domain, 12 studies [1,6,18–20,22,26,38–40,43,45] were rated as having an “unclear
risk”, and only one [41] was characterized as “high risk”. For the index test domain,
30 studies [1,2,7,18–20,22,24–33,38–46,49,50,52,53] were rated as “high risk” and one as
“unclear risk” [21]. An “unclear risk” of bias was also identified in four studies [1,19,27,45]
in the reference standard domain and in two studies in the flow and timing domain, with
only one study [20] in this category rated as “high risk”. Applicability concerns were
present in two studies [38,45] with a “high risk” in the patient selection domain, while all
other studies were rated as having a “low risk”.

The results of the CLAIM assessment are summarized in Figure 3. The proportion of “Yes”
responses varied considerably among the included studies, ranging from 43% to 89%. Nine studies
[1,6,18–20,26,27,43,45] scored below 60%, while 13 studies [7,10,21,24,25,28,30,34–37,49,52] achieved
a high compliance rate above 80%. No articles were excluded based on these assessments.
Publication bias assessment was not performed.
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Figure 2. QUADAS-2 traffic light plot [1,2,5–7,10,18–53]. Low risk is indicated by a green ‘+’, unclear
risk by a yellow ‘?’, and high risk by a red ‘−’.

Figure 3. CLAIM checklist compliance [1,2,5–7,10,18–53].

3.3. Study Characteristics

The 42 included studies (Table 1) were published between 2018 and 2023 and were
conducted in 15 countries (Figure 4), with the largest contribution coming from China
(18 studies) [10,21–25,30,35,36,38,40,44,48–53].
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Table 1. Study characteristics.

Author (Year) Country Diseases Imaging
Modality Dataset Reference Standard AI Task AI Type AI Architecture

Internal
Validation
Method

External
Validation

Explainable
AI

Ait Hammou
(2023) [18] Canada

ERM; normal;
5 other retinal
diseases

OCT

public (one dataset);
private (one image
and one video
dataset)

experienced
fellowship trained
retina specialist

detection DL ML

Swin Transformer; Vision
Transformer; Multiscale
Vision Transformer;
EfficientNetB0; NasNetLarge;
NasNetMobile; Xception

cross
validation no saliency

maps

Baamonde
(2019) [6] Spain ERM SD-OCT private one expert

clinician detection ML
Multilayer Perceptron; Naive
Bayes; K-Nearest Neighbors;
Random Forest

10-fold cross
validation no no

Bai
(2022) [10] China

ERM; 13 other
retinal
diseases

SD-OCT private (4 local
communities)

3 retina
professors with more
than 12 yoe

detection DL Cascade-RCNN 6:2:2 holdout
validation no no

Boyina
(2022) [19] India

ERM; normal;
6 other ocular
diseases

CFI public
(one dataset) ophthalmologists detection DL ResNet 7:2:1 holdout

validation no no

Bui
(2023) [20]

South
Korea

ERM; normal;
2 other retinal
diseases

OCT private (one
hospital)

annotated by a junior
doctor and verified
by a senior doctor

detection DL Sparse Residual Network
(multi-scale)

holdout
validation;
train–test split
(80%-20%)

no Grad-CAM

Cao
(2022) [21] China ERM; 23 other

ocular diseases UWFI Private
(3 hospitals)

expert
ophthalmologists detection DL, ML

Channel-attention feature
pyramid network;
ResNetXt-50;

train–test-
validation split yes lesion atlas;

Grad-CAM

Cen
(2021) [22]

China,
USA

ERM; 29 other
ocular diseases CFI

public (7 datasets);
private
(3 hospitals)

expert
ophthalmologists detection DL

custom CNN; (based on
Inception-V3; Xception;
InceptionResNet-V2)

split yes Grad-CAM;
DeepSHAP

Chen
(2023) [23] China

ERM; 10 other
retinal
diseases

OCT private (one
hospital)

two certified
ophthalmologists detection DL

ResNet50; YOLOv3; AlexNet;
VGG16; DenseNet;
InceptionV3 (ensemble
learning approach)

4:1:1 holdout
validation no Grad-CAM

Crincoli
(2023) [5]

Italy
France ERM stage II OCT private

(2 hospitals) 2 expert graders
postoperative
BCVA
prediction

DL Inception-ResNet-V2 holdout
validation no LIME

Dong
(2022) [24] China

ERM; normal;
8 other ocular
diseases

CFI
private (10 healthcare
centers and one
hospital)

3 examiners of a
group of 40 certified
ophthalmologists,
discrepancies
resolved by 6 senior
specialists

detection DL Yolov3 holdout
validation yes Grad-CAM
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Table 1. Cont.

Author (Year) Country Diseases Imaging
Modality Dataset Reference Standard AI Task AI Type AI Architecture

Internal
Validation
Method

External
Validation

Explainable
AI

Gende
(2022) [1] Spain ERM; normal HD-OCT private one expert

detection
and seg-
mentation

DL
Multi-scale feature pyramid
network (with DenseNet-121;
ResNet-18; Inception-v4)

4-fold cross-
validation (eye
level)

no no

Gu
(2023) [25] China

ERM; normal;
13 other ocular
diseases

CFI
private (6 primary
healthcare
settings)

2 retina specialists
with 5–10 yoe detection DL Yolov3; EfficientNet-B3 5:1 holdout

validation yes attention
heatmap

Hirota
(2022) [26] Japan

ERM; 9 other
retinal
diseases

OCT private
(3 hospitals)

2ophthalmologists at
each hospital detection DL ML

ResNet-152; DenseNet-201;
EfficientNet-B7; Ensemble
model using Random Forest

3-fold cross
validation no Grad-CAM

Hsia
(2023) [2] Taiwan ERM SD-OCT private

(one hospital) 2 retina specialists
postoperative
BCVA
prediction

DL ResNet-50; ResNet-18 9:1 holdout
validation no Grad-CAM

Hung
(2023) [27]

Taiwan
Poland ERM SD-OCT private

(one hospital)

expert-labeled ERM
staging by
ophthalmologists

detection DL

Fusion network including
ResNet; MobileNet;
EfficientNet; Swin
Transformer; MLP-Mixer

5-fold cross
validation no Grad-CAM

Inferrera
(2023) [28] Italy

ERM; normal;
7 other retinal
diseases

SD-OCT private
(one hospital)

2 experienced
retina specialists detection DL VGG-16

9:1 holdout
validation;
5-fold cross
validation for
training and
validation

no Grad-CAM

Inoda
(2023) [29] Japan

ERM; normal;
other retinal
diseases

SS-OCT private
(one hospital)

one ophthalmologist
and one retina
specialist; BCVA by
an optometrist

postoperative
BCVA
prediction

DL GoogLeNet (Inception Net) 10-fold cross
validation yes no

Jin
(2023) [30]

China
Japan
Singa-
pore

ERM classified
into 6 severity
stages (normal
is the stage 0)

OCT

private
(9 international
medical centers
and one hospital)

expert-labeled
images by
4 experienced
retina specialists

detection
and seg-
mentation

DL

iERM with two-stage deep
learning architecture;
ResNet-34 backbone;
Segmentation model based
on U-Net

train–
validation-test
split (7:1:2
ratio)

yes

CAM and
segmentation-
based
feature
analysis

Kim K
(2021) [31]

South
Korea

ERM; 6 other
retinal
diseases

CFI private
(one hospital) one retina specialist detection DL ResNet-50; VGG-19;

Inception v3
5-fold cross
validation no Grad-CAM

Kim S
(2022) [32]

South
Korea ERM SD-OCT private

(one hospital) ophthalmologists
postoperative
BCVA
prediction

DL VGG-16
7:1.5:1.5
holdout
validation

no attention
maps
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Table 1. Cont.

Author (Year) Country Diseases Imaging
Modality Dataset Reference Standard AI Task AI Type AI Architecture

Internal
Validation
Method

External
Validation

Explainable
AI

Kuwayama
(2019) [33] Japan

ERM; normal;
other retinal
diseases

HD-OCT private
(one hospital) one ophthalmologist detection DL custom CNN 9:1 holdout

validation no no

Lee
(2021) [34]

South
Korea

ERM; 4 other
retinal
diseases

CFI private
(one hospital)

2 retina specialists
and three residents
with third to fourth
year training

detection DL ResNet-50 stratified
bootstrapping yes Grad-CAM

Li
(2022) [35] China ERM; 10 other

ocular diseases CFI private
(3 hospitals)

17 senior
board-certified
ophthalmologists

detection DL SeResNext50 4:1 holdout
validation yes Grad-CAM

Lin D
(2021) [36] China

ERM; normal;
13 other ocular
diseases

CFI private (16 clinical
settings)

40 ophthalmologists;
6 retina specialists detection DL

InceptionResNetV2 CNN
Comprehensive AI Retinal
Expert—CARE system

8:2 holdout
validation yes attention

heatmaps

Lin P
(2022) [37] Taiwan

ERM; normal;
3 other retinal
diseases

CFI private
(one hospital)

expert-labeled
fundus images detection DL ML VGG-16 8:2 holdout

validation no Grad-
CAM++

Liu
(2022) [38] China ERM; other

ocular diseases SD-OCT private (4 primary
care stations)

2 ophthalmologists
with more than
15yoe

detection DL Deep and Shallow Feature
Fusion Network no no

Lo
(2020) [39] Taiwan

ERM; normal;
other ocular
diseases

SD-OCT private
(one hospital)

senior retinal
specialist with more
than 18 yoe

detection DL ResNet-101 8:2 holdout
validation no Grad-CAM

Lu
(2018) [40] China

ERM; normal;
3 other retinal
diseases

HD-OCT private
(one hospital)

17 licensed retina
experts detection DL ResNet 10-fold cross

validation no no

Parra Mora
(2021) [41] Portugal ERM;

non-ERM SD-OCT private
(one hospital)

medical
ophthalmology
specialists

detection DL AlexNet; SqueezeNet;
ResNet; VGGNet

10-fold cross
validation no Grad-CAM

Parra Mora
(2022) [42] Portugal ERM;

non-ERM SD-OCT
public (2 datasets);
private
(one dataset)

2 graders segmentation DL LOCTSeg (Fully
Convolutional Network)

equal split;
6-fold cross-
validation;
even–odd
patient split

no no

Pham
(2023) [43]

South
Korea

ERM; 5 other
retinal
diseases

UWFI private
(one hospital)

annotated by
experienced
ophthalmologists

detection DL Xception; ResNet50;
MobileNetV3, EfficientNetB3

train–
validation split
(9:1 ratio)

no no
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Table 1. Cont.

Author (Year) Country Diseases Imaging
Modality Dataset Reference Standard AI Task AI Type AI Architecture

Internal
Validation
Method

External
Validation

Explainable
AI

Shao
(2021) [44] China ERM;

non-ERM CFI private
(one hospital)

3 ophthalmologists
(resident doctor,
attending, retina
specialist)

detection DL
combination of
Inception-Resnet-v2 and
Xception

not reported no Grad-CAM

Shitole
(2023) [45] India ERM; other

ocular diseases CFI public
(one dataset)

annotated by
ophthalmologists detection DL

DenseNet-201; ResNet152V2;
XceptionNet; EfficientNet-B7;
MobileNetV2;
EfficientNetV2M + Ensemble
Model

train–
validation-test
split (60%-
20%-20%)

no no

Sonobe
(2018) [46] Japan ERM;

non-ERM 3D-OCT private
(one hospital) 2 ophthalmologists detection DL ML Support Vector Machine;

custom CNN
8:2 holdout
validation no no

Talcott
(2023) [47]

USA
Germany
Portugal
Singapore

ERM; normal;
other ocular
diseases

HD-OCT private
(9 hospitals) 2 ophthalmologists detection DL Modified ResNet-50 5-fold cross

validation yes no

Tang
(2022) [48] China ERM HD-OCT private

(one hospital)
one expert with
more than 20 yoe detection DL U-net 9:1 holdout

validation no no

Tham
(2021) [49]

Singapore
China
India
Australia

ERM; other
ocular diseases CFI public (6 datasets) trained

ophthalmologists

postoperative
BCVA
prediction

DL ResNet-50 8:2 holdout
validation yes Grad-CAM

Wang J
(2023) [50] China

ERM; normal;
other ocular
diseases

OCT private
(2 hospitals) 2 specialists detection DL Custom model

random
train–test split
(target data)

no Grad-CAM

Wang L
(2020) [51] China

ERM; normal;
other ocular
diseases

SD-OCT private
(2 hospitals)

2 ophthalmologists
and one senior retina
specialist

detection DL ML Feature pyramid network;
Random Forest

8:2 holdout
validation yes feature

importance

Wen
(2023) [52] China ERM SD-OCT private

(one hospital)

postoperative
BCVA
prediction

DL Inception-Resnet-v2 6:2:2 holdout
validation no Grad-CAM
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Table 1. Cont.

Author (Year) Country Diseases Imaging
Modality Dataset Reference Standard AI Task AI Type AI Architecture

Internal
Validation
Method

External
Validation

Explainable
AI

Yan
(2023) [53] China ERM; normal SD-OCT private (3 hospitals)

4 experienced retina
specialists with more
than 10 yoe

detection
and seg-
mentation

DL SegNet; ResNet 9:1 holdout
validation no no

Yeh
(2023) [7] Taiwan ERM SD-OCT private

(one hospital) experts
postoperative
BCVA
prediction

DL Heterogeneous Data Fusion
Net (HDF-Net)

9:1 holdout
validation;
10-fold cross
validation

no Grad-CAM

AI (artificial intelligence); BCVA (best corrected visual acuity); CAM (class activation mapping); CFI (color fundus imaging); CNN (convolutional neural network); DeepSHAP (Deep
SHapley Additive exPlanations); DL (deep learning); ERM (epiretinal membrane); Grad-CAM (gradient-weighted-class activation mapping); HD-OCT (high-definition optical coherence
tomography); LIME (local interpretable model-agnostic explanations); ML (machine learning); OCT (optical coherence tomography); SD-OCT (spectral-domain optical coherence
tomography); SS-OCT (swept-source optical coherence tomography); UWFI (ultra-wide-field imaging); yoe (years of experience); 3D-OCT (3-dimensional optical coherence tomography).
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Figure 4. Publication trends by country.

Most of the included studies used self-built datasets, whereas others used institutional
databases, publicly available datasets, or subsets from other studies. In 26,2% of the studies,
AI models were trained on datasets featuring ERM, either exclusively or in combination
with images from normal eyes. The remaining studies used datasets that included multiple
retinal diseases. The imaging modalities employed included OCT (SD, SS, HD, or other)
in 28 studies [1,2,5–7,10,18,20,23,26–30,32,33,38–42,46–48,50–53] and color fundus images
(CFI) in 14 studies [19,21,22,24,25,31,34–37,43–45,49]. DL was the most commonly used
approach, applied in 98% of the studies, with CNNs being the predominant architecture.
Regarding XAI techniques, 64% of the studies incorporated them into their models, while
external validation was performed in 29% of the studies (Figure 5). Of the included studies,
81% focused on ERM detection, 10% on segmentation, and 17% on postoperative BCVA
prediction, with some studies addressing more than one task (Figure 6).

64% 

36% 

71% 

29% 

Figure 5. Studies reporting external validation and XAI use.
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81% 

10% 
17% 

Figure 6. Distribution of studies by task.

3.4. Meta-Analysis

Sixteen studies [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51] comprising a total of
533,674 images—of which 26,315 were positive for ERM—were included in the meta-
analysis (Supplementary Table S2). DL algorithms demonstrated high diagnostic perfor-
mance across all pooled metrics (Figures 7–13). The overall pooled sensitivity was 0.927
(95% CI: 0.875 to 0.958), while the pooled specificity was 0.973 (95% CI: 0.957 to 0.983).
Positive and negative predictive values were also favorable, with pooled PPV and NPV of
0.820 (95% CI: 0.666 to 0.913) and 0.991 (95% CI: 0.982 to 0.995), respectively. The overall
diagnostic accuracy was 0.967 (95% CI: 0.948 to 0.979), and the DOR was 440.5 (95% CI:
162.9 to 1190.8). Heterogeneity was substantial across all metrics, with I2 values exceeding
98% for each, indicating considerable between-study variability. The SROC yielded an AUC
of 0.983 and a normalized pAUC of 0.963, reflecting excellent overall discriminative ability.

Subgroup analysis based on the use of external validation datasets revealed important
differences in diagnostic performance. In studies that used external validation, the pooled
sensitivity was 0.90 (95% CI: 0.82 to 0.95) and the specificity was 0.97 (95% CI: 0.96 to 0.99).
However, the PPV was substantially lower at 0.58 (95% CI: 0.37 to 0.77), while the NPV
remained very high at 1.00 (95% CI: 0.99 to 1.00). In contrast, studies that relied solely on
internal validation reported a higher sensitivity of 0.94 (95% CI: 0.87 to 0.97) and a similar
specificity of 0.97 (95% CI: 0.94 to 0.99). The PPV in this subgroup was markedly higher at
0.91 (95% CI: 0.78 to 0.96), while the NPV was 0.98 (95% CI: 0.96 to 0.99). These findings
suggest that while DL models retain high sensitivity and NPV under external validation
conditions, their PPV—and thus their ability to correctly identify true positives—declines
when evaluated on previously unseen data.

When stratified by imaging modality, DL algorithms using OCT images demonstrated
superior diagnostic performance compared to those using fundus photographs. For models
trained on fundus photography, the pooled sensitivity was 0.87 (95% CI: 0.78 to 0.93), and
the specificity was 0.96 (95% CI: 0.94 to 0.98). The PPV and NPV in this group were 0.59
(95% CI: 0.45 to 0.72) and 0.99 (95% CI: 0.98 to 1.00), respectively. In contrast, models
developed and tested using OCT images achieved a pooled sensitivity of 0.97 (95% CI: 0.94
to 0.99) and a specificity of 0.98 (95% CI: 0.97 to 0.99). The PPV for OCT-based models
was 0.96 (95% CI: 0.92 to 0.98), and the NPV was 0.99 (95% CI: 0.98 to 0.99). Accuracy and
DOR followed the same pattern, with OCT models achieving a DOR of 2069.6 (95% CI:
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417.8 to 10,253.3), significantly higher than the 167.9 (95% CI: 63.9 to 441.4) observed in
fundus-based models.

 

Figure 7. Pooled diagnostic accuracy of deep learning models for ERM detection, stratified by
(a) imaging modality (fundus photography vs. optical coherence tomography) and (b) use of external
validation [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents the accuracy
of an individual study with its corresponding 95% CI. The two subgroup diamonds indicate the
pooled accuracy within each category, while the bottom diamonds represent the overall pooled
estimate across all studies. The column “TP and TN” shows the total number of correctly classified
images (both true positives and true negatives), and “Total” refers to all images analyzed in that study.
Accuracy reflects the overall proportion of correctly classified images (both ERM and non-ERM)
among all evaluated cases.
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Figure 8. Pooled sensitivity of deep learning models for ERM detection, stratified by
(a) imaging modality (fundus photography vs. optical coherence tomography) and (b) use of
external validation [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents
the sensitivity of an individual study with its corresponding 95% confidence interval (CI). The two
subgroup diamonds indicate the pooled sensitivity within each category, while the bottom diamonds
represent the overall pooled estimate across all studies. The column “True positives” indicates the
number of ERM cases correctly identified by the model, and “Total” represents all confirmed ERM
cases in that study. Sensitivity reflects the proportion of ERM cases correctly detected by the model.
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Figure 9. Pooled specificity of deep learning models for ERM detection, stratified by (a) imaging
modality (fundus photography vs. optical coherence tomography) and (b) use of external valida-
tion [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents the specificity of
an individual study with its corresponding 95% confidence interval (CI). The two subgroup diamonds
indicate the pooled specificity within each category, while the bottom diamonds represent the overall
pooled estimate across all studies. The column “True negatives” shows the number of non-ERM
images correctly classified as not having ERM by the algorithm, while “Total” refers to the total
number of non-ERM images included in each study. Specificity quantifies the model’s ability to
correctly exclude non-ERM cases.
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Figure 10. Pooled PPV of deep learning models for ERM detection, stratified by (a) imaging modality
(fundus photography vs. optical coherence tomography) and (b) use of external validation [1,20,21,
24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents the PPV of an individual study
with its corresponding 95% confidence interval (CI). The two subgroup diamonds indicate the pooled
PPV within each category, while the bottom diamonds represent the overall pooled estimate across
all studies. The “True positives” column indicates the number of images correctly classified as ERM
by the model, and “Total” refers to the total number of images the model predicted as ERM. PPV
represents the probability that an image classified as ERM by the model truly had ERM.
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Figure 11. Pooled NPV of deep learning models for ERM detection, stratified by (a) imaging modality
(fundus photography vs. optical coherence tomography) and (b) use of external validation [1,20,21,
24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents the NPV of an individual study
with its corresponding 95% confidence interval (CI). The two subgroup diamonds indicate the pooled
NPV within each category, while the bottom diamonds represent the overall pooled estimate across
all studies. The “True negatives” column shows correctly identified non-ERM cases, and “Total”
represents the total number of images the model predicted as not having ERM. NPV indicates the
probability that an image classified as non-ERM by the model was truly free of ERM.
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Figure 12. Pooled DOR of deep learning models for ERM detection, stratified by (a) imaging modality
(fundus photography vs. optical coherence tomography) and (b) use of external validation [1,20,
21,24,25,28,31,34,35,37,39,41,43,44,46,51]. Each horizontal line represents the DOR of an individual
study with its corresponding 95% confidence interval (CI). The two subgroup diamonds indicate the
pooled DOR within each category, while the bottom diamonds represent the overall pooled estimate
across all studies. The “ERM cases” column shows the total number of images that had ERM, and
“Total” represents the total number of images evaluated in that study. The DOR summarizes the
overall discriminative ability of each model; higher values indicate stronger differentiation between
ERM and non-ERM cases.
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Figure 13. SROC curve summarizing the overall diagnostic performance of deep learning models for
ERM detection [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51]. Each circle shows a study’s sensitivity–
specificity pair, with size reflecting study weight. The solid line represents the pooled ROC curve
from the bivariate random-effects model, and the shaded area shows its 95% confidence region.

Together, these results confirm that DL systems are capable of achieving near-
expert performance in detecting ERM, particularly when applied to OCT data. How-
ever, the reduced PPV observed under external validation highlights the importance
of evaluating models on truly independent datasets to ensure generalizability before
clinical implementation.

4. Discussion
4.1. Overview and Comparison with Previous Work

Existing systematic reviews have investigated the performance of AI models in the
detection of ophthalmic diseases, such as age-related macular degeneration (AMD) [54],
retinal detachment (RD) [55], and pathological myopia [56]. ERM can cause significant
visual disturbances and a decrease in visual acuity. Therefore, AI may play a key role in
early diagnosis and in predicting postoperative outcomes. To the best of our knowledge,
only one recent systematic review and meta-analysis has focused on ERM detection using
AI models [57]. Our work expands on this by also including studies that employed AI for
segmentation of ERM-related features and prediction of postoperative BCVA.

Segmentation studies demonstrated promising performance, suggesting that AI could
help identify ERM and related retinal layers to support diagnosis and surgical planning.
Quantitative segmentation outputs, such as AI-assisted ERM thickness measurements,
may also assist clinicians in surgical decision-making, although this aspect was beyond
the primary scope of our review. Four studies [1,30,42,53] applying segmentation-based
approaches reported consistently strong results, indicating that feature-level segmentation
can enhance diagnostic precision and clinical interpretability. This is in line with evidence
from other retinal diseases, such as geographic atrophy, where AI segmentation models
have shown excellent performance [58]. Similarly, studies that investigated postopera-
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tive BCVA prediction showed encouraging preliminary results, indicating that AI could
potentially support clinicians in estimating visual outcomes after surgery. However, due
to the limited number of studies—seven focusing on BCVA prediction [2,5,7,29,32,49,52]
and four on segmentation [1,30,42,53]—and the substantial heterogeneity in their reported
performance metrics, these studies were not included in our quantitative synthesis. Further
robust, standardized research is needed to better establish the role of AI in predicting
postoperative outcomes.

Our meta-analysis included 16 studies [1,20,21,24,25,28,31,34,35,37,39,41,43,44,46,51]
and assessed the diagnostic performance of AI algorithms for ERM detection based on
OCT images and fundus photographs. The results confirmed the high performance of
AI models in ERM detection. When stratified by imaging modality, models trained on
OCT scans demonstrated superior diagnostic performance compared to those trained on
fundus photographs. These findings contrast with those of Mikhail et al. [57], who reported
that OCT-based models showed lower accuracy and specificity than fundus-based ones.
Although OCT-based models were clearly superior in pooled sensitivity (0.97) and PPV
(0.96), fundus-based models retained high specificity (0.96) and very high NPV, making
them attractive for triage, screening, and primary-care deployments where OCT is not
available. Fundus photography also offers advantages in low-resource or community
settings due to its lower cost, portability, and widespread accessibility. Optimizing AI
algorithms for fundus-based ERM detection could therefore support early identification
of cases in underserved populations and help reduce healthcare disparities in access to
retinal diagnostics.

Furthermore, our subgroup analysis based on the use of external validation sets re-
vealed that sensitivity and NPV remained high when external datasets were used, whereas
PPV tended to decrease when models were applied to previously unseen data. In addi-
tion, the sharp decline in PPV that we observed under external validation suggests that
ERM models should undergo site-specific recalibration. Practical options include simple
threshold resetting to local prevalence, post hoc probability calibration (e.g., temperature
scaling), or lightweight domain adaptation to account for OCT-device and demographic
shifts. Reporting such recalibration procedures will improve real-world transportability.
Overall, these results suggest that AI-based models are reliable tools for ERM detection,
though their performance may vary depending on image quality, patient demographics,
and dataset characteristics.

The clinical value of this review lies in demonstrating how AI-based systems can
streamline the diagnosis and management of ERM. Automated detection and segmentation
can reduce interobserver variability and save time in clinical workflows, while postop-
erative BCVA prediction models may assist in patient counseling and surgical planning.
Integrating such tools into routine image analysis could therefore enhance diagnostic
precision, improve efficiency, and support more personalized management strategies for
patients with ERM.

4.2. AI Architecture and Model Characteristics

In this systematic review, the majority of the included studies employed DL. More
specifically, CNNs were the predominant model architecture, including various versions
of pretrained architectures such as AlexNet, ResNet, DenseNet, and Inception v3. The
introduction of ensemble models [23,26] and hybrid architectures has also enhanced the
diagnostic accuracy of the models. Interestingly, only one study [6] exclusively employed
classical ML models such as Multilayer Perceptron, Naive Bayes, K-Nearest Neighbors,
and Random Forest, whereas a few others integrated a combination of both DL and
ML approaches [18,21,26,37,46,51]. This architectural diversity reflects ongoing efforts
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in retinal imaging research to identify the most effective and accurate AI-based models
for diagnosing ERM and other retinal diseases. This approach is supported by previous
research, as ensemble mechanisms can extract diverse image features and achieve higher
performance. They have also been shown to outperform human graders, and they can be
trained for predictive modeling [59].

4.3. Model Explainability

Most ML and DL models are neither inherently interpretable nor explainable. Post
hoc explainability-enhancing algorithms are a complementary AI tool that facilitates the
interpretation of black box models [60]. Among the 42 included studies, 64% had applied
some form of XAI, reflecting not only the evolution of more reliable AI models but also the
increasing importance of interpretability in clinical decision-making. Gradient-weighted
Class Activation Mapping (Grad-CAM) was the most widely used method, featured in 74%
of the XAI-enabled studies. Grad-CAM generates visual heatmaps highlighting regions
of the image influencing the outcome [61]. Some studies incorporated Local Interpretable
Model-Agnostic Explanations (LIME), attention-based heatmaps, saliency maps, other Class
Activation Maps (CAM), and feature importance metrics to increase explainability. Despite
the substantial role of XAI tools, concerns remain regarding their reliability. Several studies
have shown that these visualizations can compromise consistency, sometimes highlighting
irrelevant image features and potentially jeopardizing clinical decisions, particularly when
the explanation provided by the saliency map does not align with the prediction [62]. From
this point of view, future research should emphasize the development of either inherently
interpretable models or more reliable post hoc methods to maximize the potential of XAI in
ERM detection.

4.4. Strengths and Limitations

This study has several strengths. We calculated pooled performance metrics, including
PPV and NPV, to assess the diagnostic accuracy of AI models. This may reflect the models’
practical use in clinical settings and shift the focus of current research toward the application
of AI models on real-world data. Another strength is the stratification based on the use of
an external dataset and imaging modality. We showed that the PPV of the models decreases
when tested on external datasets, highlighting the need for external validation to ensure
reliability and generalizability. We also showed that models trained and tested on OCT
images demonstrated higher performance, which aligns with the use of OCT as the gold
standard in ERM diagnosis. Furthermore, although we could not quantify the applicability
of prognostic AI models for predicting postoperative outcomes in ERM, such as the BCVA,
we identified existing studies in the literature and highlighted the need for further research
in this area.

Despite the promising results, several important limitations can be identified. First,
although the results regarding models’ performance were encouraging, there was high
heterogeneity, indicating variability between studies and suggesting cautious interpretation
of the findings.

Secondly, the majority of studies used retrospective data from single institutions
(self-built datasets). While these datasets are readily available and convenient for model
development, they inherently limit the generalizability of AI models. Among the 42 studies
included in this systematic review, 52% used data from single institutions, and only 19%
engaged private or public datasets collected from broader networks, highlighting the
predominance of limited-scope data. Single-center datasets often reflect narrow patient
demographics, localized disease prevalence, and institution-specific diagnostic or labeling
practices. We did not collect or analyze specific demographic characteristics of the pop-
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ulation, such as age, sex, or ophthalmic history, which limits the generalizability of our
results. Additionally, the size of these datasets poses a further limitation in evaluating
models’ performance and reliability [63].

It is worth noting that many of the included AI models were not trained and tested
on ERM-only datasets, but also on a broader range of retinal conditions, such as AMD,
DR, macular hole, myopia, and branch retinal vein occlusion (BRVO). While this multi-
disease approach enhances the applicability in real-world practice [10], it may limit the
model’s ability to accurately detect ERM, particularly when ERM cases represent a small
proportion of the overall dataset. In such cases, multi-label classification models may
exhibit reduced performance in detecting ERM specifically. Enhancing accuracy and
generalizability requires the use of larger and enriched datasets and the adoption of transfer
learning strategies [33].

Another important limitation is the limited use of external and real-world clinical
validation. Although internal validation techniques such as hold-out and cross-validation
were routinely performed, only a limited number of studies advanced beyond this phase
and tested their algorithms on truly independent datasets, which is essential for improv-
ing model generalizability and robustness. This represents a critical gap, as algorithm
performance can be negatively affected when applied to broader or more heterogeneous
patient populations, highlighting the need for external validation using datasets that differ
in device type, patient demographics, and disease presentation.

An additional limitation of this review is the potential noise introduced in ground
truth labeling due to the use of mixed graders across many studies, which affects both
the reliability of the models and contributes to heterogeneity [64]. While some articles
clearly stated that annotations were performed by experienced retinal specialists [25], others
involved graders with varying levels of expertise [34] or did not report grader qualifications
at all [7]. For example, one study [51] reported interrater variability in ERM labeling using
the kappa statistic, highlighting the challenge of consistent annotation even among experts.
This reflects the need for standardized grading protocols or adjudication procedures to
ensure consistency in expert labeling and annotation. It should also be noted that we
did not compare the performance between human graders and AI models due to limited
data availability.

Among the included studies, one [6] used a methodological variation in ERM classifi-
cation, employing both a two-class and three-class classification approach. The majority
of studies employed a binary approach (ERM versus normal), which simplifies model
training and usually achieves higher overall accuracy. However, this may not correspond
to the real-world clinical data, where the ERM stage varies. Therefore, while multi-class
classification can provide wider and more detailed diagnostic information, it also poses
challenges such as increased complexity and reduced model performance. There is also
a lack of studies focusing on the monitoring and management of ERM using AI-based
models, highlighting an important gap that future research should address.

Another potential limitation of this review is the exclusion of non-English publica-
tions and preprints, which may have introduced selection bias. Given the global nature
of AI research in ophthalmology, relevant studies published in other languages or as
preprints—particularly from rapidly advancing research communities in Asia—might not
have been captured. Although this decision ensured methodological consistency and
quality control, it may have limited the comprehensiveness of the included evidence.

4.5. QUADAS-2 and CLAIM Assessments

The risk of bias assessment using only the QUADAS-2 tool was challenging. To address
the limitations of the QUADAS-2 tool, which is not specifically designed for evaluating
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AI-based diagnostic studies, we incorporated the CLAIM guideline. Thus, we combined
the assessment of methodological bias with AI-specific quality evaluation. According to
the QUADAS-2 assessment, most of the studies showed low risk of bias in the domains of
patient selection, reference standard, and flow/timing. However, a high risk of bias was
observed in the index test domain, probably due to the lack of a pre-specified threshold.
Several of the included studies used mixed graders or did not fully report grader qualifica-
tions, introducing potential inter-grader variability in the reference standard. One study
explicitly reported inter-rater agreement, confirming that label noise is not negligible in
ERM datasets. Additionally, differences in annotation methods across studies may have fur-
ther introduced annotation noise, potentially inflating diagnostic accuracy and leading to
overestimated sensitivity and specificity. Similar overestimations could also stem from high
or “unclear risk” in the index test domain, particularly in single-center studies. Collectively,
these sources of bias likely contributed to the substantial heterogeneity (I2 > 98%) observed
across pooled metrics. Because most original studies did not provide re-estimates under
alternative reference standards, we could only discuss—rather than recompute—the quan-
titative impact. This underscores the need for detailed reporting of the model development
process, with regard to classification cut-offs and standardization methods.

On the other hand, the CLAIM assessment revealed moderate variability in reporting
quality across the studies, with the proportion of “Yes” answers ranging from below 50%
to above 85%. While several studies clearly defined the AI model design and transparency,
others lacked important methodological disclosures, such as dataset composition, explain-
ability techniques, or performance metrics. These findings underline the importance of bias
reduction strategies to ensure the reliability and reproducibility of AI tools intended for
clinical integration in ERM detection.

4.6. Approach for Future Studies

In addition to the technical advancements already discussed—such as multicenter
prospective data collection, external and real-world clinical validation, interrater reliability,
and the development of clinically explainable AI models—future studies should also
focus on ethical and regulatory compliance. The recent implementation of the EU AI
Act [65], in conjunction with frameworks such as the General Data Protection Regulation
(GDPR) [66], underscores the importance of preserving patient anonymity. To align with
these regulations, future AI models for ERM assessment must incorporate robust de-
identification strategies. Such practices will not only protect sensitive medical data but also
enhance the transparency, accountability, and overall quality of AI model reporting.

In practical terms, compliance with regulatory and ethical frameworks such as the
EU AI Act and GDPR requires technical and procedural safeguards. These include de-
identification at the DICOM or OCT volume level, local or on-premise model training to
minimize patient data exposure, and the adoption of model-card style documentation to
ensure transparency regarding model design and limitations. Continuous post-deployment
monitoring and auditing are also essential to maintain safety and accountability throughout
the model’s clinical lifecycle.

5. Conclusions
In conclusion, this systematic review and meta-analysis highlight the promising per-

formance of AI applications in the assessment of ERM, with a particular emphasis on
DL models using OCT and color fundus images. Despite ongoing algorithmic advances,
critical limitations in the current literature remain, including limited external validation,
insufficient explainability techniques, and scarce real-world clinical testing. Future research
should focus on multicenter data collection, external benchmarking, standardized labeling
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protocols, and prospective clinical validation. Privacy-preserving approaches, such as feder-
ated or swarm learning, where model parameters rather than patient images are exchanged
across sites, may enable training on heterogeneous OCT devices and demographics, while
maintaining compliance with GDPR and EU AI Act requirements.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app152212280/s1, Table S1: PRISMA 2020 checklist; Table S2:
Performance metrics of selected studies.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AMD Age-related Macular Degeneration
ANN Artificial Neural Network
AUC Area Under the Curve
BCVA Best Corrected Visual Acuity
BRVO Branch Retinal Vein Occlusion
CAM Class Activation Map
CFI Color Fundus Images
CI Confidence Interval
CLAIM Checklist for Artificial Intelligence in Medical Imaging
CNN Convolutional Neural Network
DL Deep Learning
DOR Diagnostic Odds Ratio
ERM Epiretinal Membrane
EU European Union
FN False Negative
FP False Positive
GDPR General Data Protection Regulation
Grad-CAM Gradient-weighted Class Activation Mapping
HD High-Definition
ICTRP International Clinical Trials Registry Platform
ILM Internal Limiting Membrane
LIME Local Interpretable Model-agnostic Explanations
ML Machine Learning
NPV Negative Predictive Value
OCT Optical Coherence Tomography
pAUC Partial Area Under the Curve
PICOS Population Intervention Comparator Outcome Study Design
PPV Positive Predictive Value
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PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QUADAS-2 Quality Assessment of the Diagnostic Accuracy Studies-2
RD Retinal Detachment
ROC Receiver Operating Characteristics
RPE Retinal Pigment Epithelium
SD Spectral-Domain
SROC Summary Receiver Operating Characteristics
SS Swept-Source
TN True Negative
TP True Positive
WHO World Health Organization
XAI Explainable Artificial Intelligence
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