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Abstract

Attenuation correction (AC) is an essential process in Single Photon Emission Computed
Tomography (SPECT) myocardial perfusion imaging (MPI), an established imaging method
for assessing coronary artery disease. Conventional AC approaches typically require
CT scans, supplementary hardware, intricate reconstruction, or segmentation processes,
which can hinder their clinical applicability. Recently, deep learning (DL) techniques have
emerged as alternatives, allowing for the direct learning of attenuation patterns from non-
AC (NAC) imaging data. This review explores the existing literature on DL-based AC
methods for SPECT MPI. We highlight high-performing models, including attention-gated
U-Net conditional Generative Adversarial Networks (GANSs), and evaluate their validation
methods. Although significant advancements have been achieved, numerous challenges
persist, which are thoroughly discussed.

Keywords: attenuation correction; myocardial perfusion imaging; deep learning

1. Introduction

SPECT MPI s an established, fundamental imaging modality for the diagnosis and
management of coronary artery disease (CAD) [1,2]. However, its diagnostic accuracy can
be undermined by inherent limitations, such as photon attenuation [3]. Photon attenuation
arises from the absorption and scattering of emitted gamma photons by tissues of vary-
ing densities, leading to artifacts that obscure the true distribution of radiotracers in the
myocardium [3]. This phenomenon affects image quality and complicates the quantita-
tive assessment of myocardial blood flow [4,5]. As a result, physicians may misinterpret
perfusion defects.

Since the introduction of hybrid systems in the late 1990s, which incorporate a com-
puterized tomography (CT) scanner into a conventional gamma-camera, CT is now used
for AC of SPECT slices [6]. From its initial application up to today, single, 4, 6, 16 and even
64 slice CT scanners have been coupled with gamma-cameras in different commercially
available SPECT/CT machines. CT produces images that serve as a transmission map,
which is then applied to SPECT data to correct photon attenuation [7]. Although the
attenuation pattern of gamma photons by various tissues is not identical to that of X-rays,
this AC method has gained wide acceptance, due to the fast CT acquisition procedure,
and other advantages provided by CT images, such as the exact localization of SPECT

Appl. Sci. 2025, 15, 11287

https:/ /doi.org/10.3390/app152011287


https://doi.org/10.3390/app152011287
https://doi.org/10.3390/app152011287
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6439-9282
https://orcid.org/0000-0001-5416-1991
https://orcid.org/0000-0003-2498-9661
https://orcid.org/0009-0009-0805-3151
https://doi.org/10.3390/app152011287
https://www.mdpi.com/article/10.3390/app152011287?type=check_update&version=2

Appl. Sci. 2025, 15, 11287

2 of 26

findings in space and the additional diagnostic information of anatomical imaging [8].
However, CT artifacts (from implanted metallic devices, respiratory motion and other
sources) and misregistration of sequentially acquired CT and SPECT images can cause AC
inaccuracies [9,10].

Conventional attenuation correction in myocardial perfusion SPECT has relied on
transmission information from CT, on segmentation or model-based approaches, and on
uniform attenuation maps. These techniques have improved image quality but they intro-
duce practical burdens that limit adoption in routine workflows [11]. Additional radiation
and cost from CT, sensitivity to misregistration between emission and transmission studies,
and the need for specialized hardware remain important constraints. Segmentation and
model-based methods often depend on assumptions that do not hold across diverse body
types and camera configurations. These constraints motivate alternative strategies that
are robust to patient variability and that minimize additional acquisition and hardware
requirements [12].

Deep Learning (DL) [13] approaches have influenced the field of medical imaging,
offering new solutions to longstanding challenges in SPECT MPI AC [14-23]. Convolutional
neural networks (CNNs) [24] and other deep architectures have demonstrated remarkable
capabilities in learning complex, non-linear mappings from raw imaging data to corrected
outputs [25]. However, the integration of deep learning into SPECT MPI AC has only
recently been investigated. Recent developments provide a data driven route to AC that
learns attenuation patterns directly from non-corrected emission data. Such approaches can
reduce reliance on supplementary transmission scans, shorten workflow, and can be trained
to preserve clinically meaningful perfusion patterns. Early studies report performance
that approaches CT-based correction on diagnostic metrics while avoiding additional
acquisitions. These factors make DL particularly relevant now that large clinical archives
and modern camera systems are widely available.

This review paper aims to provide a comprehensive overview of the state-of-the-art in
DL-based AC for SPECT MPL

Research Questions
The review addresses the following questions based on the literature:

e  Which DL architectures and algorithms have demonstrated the highest performance
in AC?

e Towhat extent do studies integrate non-image data (e.g., patient demographics, clinical
parameters) into DL models, and how does this inclusion influence model accuracy
and generalizability?

e  What quantitative metrics are employed to assess model performance and error?

e Do researchers utilize established MPI quantification metrics, such as Summed Stress
Score (5SS), Summed Difference Score (SDS), Summed Rest Score (SRS), or Total
Perfusion Deficit (TPD) to evaluate the quality of DL-generated AC images?

e  What are the typical sizes and compositions of training and validation datasets re-
ported in the literature?

e How frequently do studies employ independent external populations for addi-
tional testing?

We posed these questions to better understand how DL is currently used for AC.
There is a lot of variation in the models and techniques being applied in related tasks [26],
so identifying which architectures perform best can help steer future work in a more
focused direction.

We also argue that how often non-image data is used as inputs to the models may
be critical, since it could potentially have a substantial impact on the AC accuracy of the
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models. Another important matter is how researchers measure the quality and precision of
the generated AC images, because of the lack of a standardized set of performance metrics
in the field [27]. Similarly, understanding whether established MPI quantification metrics
are used provides insight into how clinically meaningful the results are.

Finally, reviewing the utilized datasets sizes, diversity, and the use of external valida-
tion reveals a lot about how trustworthy and transferable these models are.

2. Background
2.1. Single Photon Emission Computed Tomography

SPECT is a nuclear imaging technique used in clinical practice for functional imaging,
particularly in cardiovascular diagnostics [10]. It enables the visualization and quantifica-
tion of physiological processes by detecting gamma rays emitted from radiopharmaceuti-
cals administered to a patient. In MPI [28], SPECT holds a major role in evaluating CAD,
helping clinicians detect ischemia, assess myocardial viability, and stratify patient risk [3].

SPECT imaging involves three essential steps: radiotracer injection, image acquisition
using a gamma camera, and computational image reconstruction. Technetium-99m (**™Tc)
labeled compounds such as ™ Tc-sestamibi or ™ Te-tetrofosmin, and Thallium-201 (TI-
201), which distribute in the myocardium proportionally to blood flow are the most used
radiopharmaceuticals [29]. These isotopes emit gamma photons that are then detected
externally to form a projection dataset, which is subsequently reconstructed into a three-
dimensional image of the radiotracer distribution within the heart [30].

Compared to Positron Emission Tomography (PET), SPECT is more cost-effective
and widely available, though it typically offers lower spatial and temporal resolution [31].
Nevertheless, its clinical utility is considerable due to its diagnostic and prognostic value,
particularly in resource-constrained settings [32]. The technique is especially powerful
when combined with stress testing, revealing regional differences in myocardial perfusion
that can indicate significant coronary stenosis.

A major limitation of SPECT is the physical phenomenon of photon attenuation [33].
As gamma rays travel through the body, they may be absorbed or scattered by tissues
of varying densities (e.g., the diaphragm, breasts, ribs), leading to non-uniformities in
the detected signal [34]. These effects often create false perfusion defects or obscure true
abnormalities and, as a result, undermine diagnostic accuracy. This limitation necessitates
AC, which compensates for photon loss and enhances the fidelity of reconstructed images.

Historically, AC in SPECT has relied on the incorporation of anatomical imaging
modalities such as CT [35]. Hybrid SPECT/CT systems were introduced in the late 1990s
and gained clinical popularity due to their ability to generate attenuation maps from X-ray
data [6]. These maps are subsequently used during image reconstruction to apply spatially
varying correction factors. CT-based AC has improved diagnostic accuracy by reducing
artifacts and enabling anatomical correlation, but it introduced several practical concerns,
including additional radiation exposure, potential image misregistration due to respiratory
or cardiac motion, and logistical challenges related to hardware cost and maintenance.

Efforts have been made to explore non-CT-based AC strategies, such as segmentation-
based methods, transmission scans using radioactive sources (e.g., gadolinium-153), and
statistical modeling approaches [36]. These methods come with drawbacks, such as reliance
on anatomical assumptions, limited generalizability, and increased scan duration. More
recently, DL techniques have shown promise in learning complex attenuation patterns
directly from emission data [33], offering a new direction for SPECT AC that may bypass
the need for additional hardware.
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Another SPECT practice, recently introduced, is the camera and collimator technol-
ogy [37]. Most conventional systems use parallel-hole collimators, but newer dedicated
cardiac systems, such as those based on cadmium-zinc—telluride (CZT) detectors, utilize
multi-pinhole or IQ-SPECT collimators with multifocal geometries. These advancements
provide improved spatial resolution and sensitivity, though they also present unique
challenges for AC due to altered photon trajectories and sensitivity profiles.

Beyond replacing CT in AC, Al can improve CT inputs. Deep denoising allows
lower-dose CT while preserving HU fidelity. Supervised and adversarial metal-artifact
reduction reduce streaks that bias p and learned deformable registration can reconcile
respiratory phase differences between CT and emission data. HU-harmonization models
further stabilize bilinear scaling across scanners and kVp choices, yielding p-maps that
are more consistent for downstream reconstruction. These supportive AI components are
modality-agnostic and particularly helpful when CT quality or registration is the dominant
error source in SPECT/CT workflows.

Furthermore, image reconstruction algorithms have evolved considerably. Traditional
filtered back-projection (FBP) has largely been supplanted by iterative reconstruction meth-
ods such as ordered-subset expectation maximization (OSEM) [38], which can incorporate
physical modeling of detector response, scatter, and attenuation [39]. These reconstruc-
tions can be further enhanced by integrating DL-generated attenuation maps or direct
emission-to-corrected image mappings. Choice of radiopharmaceutical influences photon
energy and scatter fraction, thereby affecting attenuation magnitude and the stability of
AC across stress/rest and tracer protocols. Collimator geometry (e.g., LEHR, multipinhole,
IQ-SPECT) alters path-length distributions and sensitivity profiles, which can exacerbate
regional attenuation (e.g., inferior wall adjacent to the diaphragm) and complicate p-map
generation. Reconstruction methods (FBP vs. OSEM with resolution recovery and scatter
modeling) determine whether AC is applied as a physics model during iteration or post
hoc in image space; model-based reconstruction with accurate attenuation terms generally
yields better uniformity but is sensitive to u-map errors and misregistration.

From a clinical standpoint, SPECT MPI continues to be indispensable in cardiology,
supported by its inclusion in numerous international guidelines and appropriate criteria. It
provides semi-quantitative measures such as the SSS, SRS, and TPD, which aid in diagnosis
and therapeutic planning. Incorporating reliable AC, whether via CT or emerging DL
methods, is essential to preserving the modality’s clinical impact and enabling quantitative
assessments that correlate with invasive angiographic findings.

PET commonly leverages transmission scans or CT with well-characterized linear
attenuation at 511 keV, stable time-of-flight statistics, and routine motion management.
These features historically informed SPECT AC practices. Some studies have proposed
Al methods for AC in PET scans [40-44] and brain perfusion SPECT [45,46]. SPECT’s
lower photon energy and modality-specific collimation lead to different scatter/attenuation
behaviors, so SPECT requires tailored AC solutions, particularly for myocardial perfusion
where soft-tissue attenuation is non-uniform and motion is frequent.

2.2. Deep Learning for Attenuation Correction

DL, particularly in the form of CNNs [47,48], has transformed image analysis and
synthesis by enabling data-driven, end-to-end learning of complex relationships within
high-dimensional data. In medical imaging, DL captures subtle spatial patterns, corrects for
noise and artifacts, and models highly non-linear transformations [49,50]. These capabilities
make it particularly suitable for addressing the challenge of AC in SPECT MPI (Figure 1)
and other SPECT MPI related tasks, such as CAD diagnosis [51-54].
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Figure 1. General schematic of DL-based AC in MPI. Inputs include non corrected short axis volumes
or polar maps and may optionally include auxiliary channels such as scatter windows or paired stress
and rest studies. A generator network such as a U-Net with attention gates produces either directly
corrected emissions or a patient specific attenuation map. When a discriminator is used it enforces
anatomical and textural realism. The outputs are used either as corrected images for quantification or
as attenuation factors within iterative reconstruction. Evaluation uses voxel level similarity, polar
map agreement, and clinical indices.

Deep networks support non-linear mappings that counter non uniform soft tissue
attenuation and they capture multi scale spatial context that reflects diaphragm position
and breast tissue distribution. In SPECT AC this translates into recovery of inferior and
lateral wall activity while preserving true defects. Conditional adversarial training and
attention gated U-Net generators focus capacity on myocardium and attenuation related
structures and have shown improved agreement with CT-based correction and improved
diagnostic performance in external cohorts.

DL does not rely on explicit modeling of photon propagation or rigid anatomical
priors. Instead, it learns the underlying attenuation behavior directly from data [46]. This
is achieved through a hierarchical representation of features, allowing the network to build
abstract concepts from raw input, such as identifying spatial patterns that indicate tissue
density or typical anatomical configurations. However, true AC images are required for DL
to learn these transformations from NAC to AC.

A key advantage of DL in this context is that it models non-linear relationships between
the NAC input and the true AC image. Deep neural networks approximate any continuous
function given sufficient data and appropriate architecture [55]. The latter is what makes
them uniquely positioned to correct for non-uniform attenuation patterns across diverse
patient anatomies and imaging conditions.

Moreover, convolutional architectures like U-Nets and ResNets [56,57] are designed
to capture spatial dependencies at multiple scales. In the context of AC, such network
topologies consider not only local voxel/pixel intensities but also larger anatomical context
(e.g., diaphragm position, breast tissue distribution, or lateral wall thickness) to infer how
photon attenuation might have distorted the measured signal. This context-awareness is
critical for accurately reconstructing perfusion patterns that are not visible in raw NAC
data alone. cGANSs further constrain texture/anatomy realism via an adversarial dis-
criminator. Indirect pipelines that predict p-maps before iterative reconstruction provide
physics-consistent AC and facilitate quality control of the p-map. Direct NAC to AC image
translation offers faster inference and simpler integration but needs careful bias control.

DL is also highly amenable to volumetric and multi-channel inputs, enabling the inte-
gration of different imaging modalities (e.g., scatter windows, stress/rest pairs), anatomical
priors, or even demographic data into a unified predictive framework. Using deep net-
works enables end-to-end training, where the objective function can be tailored to clinical
goals. For example, training loss can be defined in terms of voxel-wise error, structural
similarity, or even clinical decision metrics like perfusion scores.
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Despite the positives, DL models are inherently dependent on large volumes of
data. Access to well-annotated, high-quality paired NAC and AC datasets is limited due
to privacy concerns, institutional variability, and the need for CT-based ground truth.
Additionally, DL models may be prone to overfitting if trained on narrowly sampled
populations or scanner types, potentially limiting generalization. Other issues DL faces
include interpretability [58], reproducibility [59], and computational expenses.

AC directly alters counts and polar-map scores. Hence, interpretability cannot be
optional. Simple, task-linked tools, such as voxel-level “change maps” that audit how
much correction was applied, saliency overlays highlighting attenuation-driven regions,
and calibrated uncertainty maps, might help readers judge when to trust DL-AC and when
to defer to CT-AC. Reproducibility likewise requires deterministic or well-documented
training/inference pipelines (including seeds and software versions), pre-specified evalu-
ation protocols, release of code/model weights when possible, and reporting that spans
voxel-level similarity, segment-level bias, and patient-level diagnostic metrics.

Current evidence supports DL AC as a complement to established pipelines, with
pathway to a replacement contingent on multi-center validation, standardized clinical
metrics, and prospective workflow studies.

3. Methodology of Literature Review
3.1. Search Strategy

A structured literature review was conducted using DL approaches to identify relevant
studies on SPECT AC. A comprehensive search was performed across multiple scientific
databases, including PubMed, Scopus, and Web of Science, using a combination of key-

i

words such as “SPECT,” “myocardial perfusion,” “attenuation correction,” “deep learning,”
and “artificial intelligence”.

An identical generic search string was applied across databases as follows: ((“single
photon emission computed tomography” OR “single-photon emission computed tomogra-
phy” OR SPECT) AND (“myocardial perfusion” OR MPI) AND (“attenuation correction”
OR attenuation OR “SPECT/CT”) AND (“deep learning” OR “machine learning” OR
“artificial intelligence” OR")).

Searches were last run on 20 February 2025. Records from all databases were exported

on the same day and deduplicated prior to screening.

3.2. Inclusion and Exclusion Criteria

A set of predefined inclusion and exclusion criteria were established and consistently
applied during the selection process to ensure the relevance and quality of the literature
reviewed. Studies were eligible for inclusion in this review if they satisfied all of the
following conditions:

The primary objective of the study was AC in SPECT MPL

The methodology involved the use of DL.

The article was peer-reviewed and published in the English language.
The publication date was after 2020.

Studies were excluded from the review if they met any of the following conditions:

e  The publication was a review article, editorial, commentary, or a conference abstract
without an accompanying full-text manuscript.
e  The study was a duplicate of another included work.
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3.3. Paper Selection

The selection of relevant studies was conducted through a systematic literature search.
The procedure involved several sequential steps. Firstly, we removed all studies before
2020. All the remaining retrieved records were imported into Zotero. Duplicate entries
were identified and removed to ensure each study was evaluated only once. Two inde-
pendent reviewers (I.D.A. and N.P.) screened the titles and abstracts of the remaining
studies to identify potentially relevant articles. Discrepancies between reviewers were
resolved through discussion or consultation with a third reviewer (D.J.A.). The full texts
of the shortlisted articles were then assessed against the inclusion and exclusion criteria
described in Section 2.2. Studies that did not meet all inclusion criteria were excluded, with
reasons documented.

The final set of articles included in the review met all eligibility criteria. A Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was
prepared to summarize the selection process visually (Figure 2). Sixteen studies qualified
for this review based on the selection process. Two reviewers (I.D.A. and E.P.) screened the
final full texts and discrepancies were resolved by discussion or adjudication by a third
reviewer (D.J.A.).

c Database search
0 (n=3)
=]
©
i
5=
o y
c
= Records identified | Removed records before
= (n=1136) | screening:
* Duplicates (n=777)
» Studies before 2020 (n = 87)
A
Records for screening |
(n=272)
Removed records:
* Review studies (n = 146)
i * Preprints (n=0)
0 Records assessed for
g eligibility _
() (Title and Abstract) Removed records:
5 (n=126) « Not based on SPECT imaging
n (n=28)
, * Deep Learning notincluded
Records assessed for (n=27)
eligibility
(Full-text reading) —
(n=71) Removed records:
* lIrrelevant (n =55)
4
Studies included in review
(n=16)

Figure 2. PRISMA flow diagram.
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4. Review Findings

In this section, we provide a short summary of each eligible study.

Hagio et al. [60] developed and validated a DL algorithm to perform “virtual” attenu-
ation correction. Using a dataset of over 11,000 stress SPECT studies with paired CT-based
attenuation-corrected (CTAC) and NAC images, they trained a modified U-Net CNN to
generate attenuation-corrected polar maps directly from NAC inputs.

In their findings, the DLAC polar maps showed markedly improved correlation with
CTAC maps compared to NAC alone (R?> = 0.85 vs. 0.68, p < 0.001). When assessed
against invasive coronary angiography (ICA) as the diagnostic gold standard, DLAC
demonstrated a significantly higher area under the ROC curve (AUC = 0.827) than NAC
(AUC =0.780, p = 0.012), and performed comparably to CTAC (AUC = 0.851, p = 0.208 vs.
DLAC). Specificity and accuracy were also significantly improved with DLAC, especially
at high sensitivity thresholds (e.g., 88% sensitivity yielded 18.9% specificity improvement
over NAC). A key strength of this study is its large training population, which enables
robust model development and evaluation. Moreover, clinical utility was assessed using
meaningful diagnostic metrics such as TPD and comparison to angiographic outcomes,
rather than relying solely on image similarity. Visual assessments confirmed that DLAC
preserved true perfusion defects while correcting soft-tissue artifacts. However, the work
is limited by its single-center design and reliance on data acquired using a single camera
system, which may affect generalizability. The model did not incorporate non-image
patient-specific data (e.g., BMI, clinical history), and evaluation was confined to TPD
without broader myocardial scoring indices such as SRS or SDS.

Prieto Canalejo et al. [61] presented a DL-based method to generate synthetic at-
tenuation correction maps (ACMs) directly from NAC SPECT emission images. The
authors retrospectively collected 384 myocardial perfusion SPECT/CT studies using 99mTc-
sestamibi: 312 for training, 64 for validation, and 66 held out for testing. A 2D U-Net with
five encoder—decoder layers was trained to predict linear attenuation coefficient maps at
140 keV from three-channel NAC inputs (adjacent slices as channels) using a composite
loss (structural similarity + mean relative error). On the independent test set, the synthetic
ACMs achieved Mean Structural Similarity Index (SSIM) MSSIM 0.97 + 0.01 and Normal-
ized Mean Absolute Error (NMAE) 3.08 &+ 1.26%, while reconstructed emission images
corrected with these maps reached MSSIM 0.99 £ 0.003 and NMAE 0.23 % 0.13%. Bland-
Altman analysis showed voxel-level limits of agreement within [-9.04, 9.00]% for emission
data and segment-level agreement [-11, 10]% for 17-segment polar maps. Semi-quantitative
SSS comparisons yielded 95% limits [-2.8, 3.0] with only 3% of patients shifting perfusion
categories. The model attained performance comparable to prior larger studies using far
fewer training examples, suggesting efficient learning of attenuation patterns.

Huxohl and colleagues [62] retrospectively collected 150 cardiac SPECT studies from
103 patients acquired on a Siemens Symbia Intevo IQ-SPECT system and trained a 3D U-Net
within a cGAN framework to predict CT-based attenuation maps from non-attenuation-
corrected reconstructions. They optimized hyperparameters via random search (215 trials),
found that an L1 distance loss and a classification-network discriminator yielded the best
NMAE (0.020 £ 0.007 on test data), and demonstrated high agreement between DL AC
and CTAC polar maps (segment-wise APE 1.155 £ 0.769, R = 0.97). A strength of this work
is its focus on a clinically prevalent IQ-SPECT collimator, whose multifocal geometry and
body-covering field of view pose unique challenges, thus extending prior methods beyond
pinhole or LEHR systems. The indirect approach (map prediction rather than direct AC
reconstruction) adds interpretability and fault tolerance, since errors in fine structures of
the map have limited impact on the final reconstruction. Moreover, the extensive random
search provides empirical guidance on loss functions and discriminator choice, which can
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inform future studies. The absence of standard clinical scoring metrics (SSS, SDS, SRS,
TPD) leaves uncertain whether the close image-based agreement translates into equivalent
diagnostic performance.

Mostafapour et al. [63] retrospectively gathered 99 99mTc-sestamibi MPI-SPECT
studies acquired on a GE Discovery NM/CT 670 dual-head SPECT/CT, applied scat-
ter correction, and reconstructed 64 x 64 x 40 ungated images. They trained two 2D
deep networks (a dilated-ResNet and a symmetric U-Net) in the NiftyNet frame-
work to directly predict CT-based AC images from NAC inputs, reserving 19 subjects
for validation. Quantitatively, both models vastly outperformed the uniform Chang
method: U-Net achieved Mean Error (ME) = —4.41 + 11.85 counts, MAE = 13.65 + 11.23,
SSIM=0.98 £ 0.05, and TPD =12.57 £ 8.93% versus CTAC’s 12.84 £ 8.63% (Chang
SSIM = 0.93 £ 0.09; TPD = 16.68 & 11.24%). Visual assessments, bias maps, and line pro-
files confirmed recovery of myocardial uptake, though occasional UNet outliers appeared
in low-count cases. A key strength is the inclusion of both low-level image metrics and
clinically meaningful perfusion indices (SSS, TPD, defect size).

Shanbhag et al. [64] trained a cGAN with an attention-gated 3D U-Net generator to
translate NAC SPECT short-axis volumes into simulated AC images (called DeepAC),
using 4886 paired CT-AC studies for training. They then validated DeepAC on 604 patients
from two external centers, including 280 with same-day coronary CTA and 324 low-
likelihood cases. DeepAC quantitative perfusion (stress TPD) achieved an AUC of 0.79
(95% CI 0.72-0.85) for obstructive CAD, outperforming NAC (AUC 0.70, p < 0.001) and
matching CTAC (AUC 0.81, p = 0.196). The normalcy rate rose to 70.4% with DeepAC
versus 54.6% non-AC (p < 0.001), and voxel-wise “change analysis” showed substantially
less positive count change (artifact correction) needed by DeepAC (median 2.4 counts) than
NAC (9.4 counts), closely aligning with CTAC (9.4 counts). A major strength of this work is
the use of a large, truly external test set drawn from two independent centers and including
both obstructive CAD and defined low-likelihood cohorts, which demonstrates the model’s
generalizability beyond its training site. Moreover, the voxel-wise change analysis provides
an interpretable measure of how DeepAC corrects attenuation artifacts. The model was
trained and tested solely on General Electric (GE) solid-state SPECT systems. Hence, its
performance on other vendors’ cameras or collimator designs is unknown.

Shi et al. [65] developed a 3D cGAN that fuses primary- and scatter-window SPECT
reconstructions to predict CT-equivalent attenuation maps. On 25 held-out subjects, their
GAN-PS model yielded a global NMAE of 3.60 & 0.85% against true CT maps, and when
used for attenuation correction, produced SPECT images with <1.5% myocardial bias and
<1.1% blood-pool bias—differences not statistically significant versus CT-based correction.
A key advantage of this work is its innovative use of multi-energy windows to leverage
scatter information, coupled with adversarial training to sharpen map fidelity. However,
the study is limited by its small, single-center cohort and lack of clinical outcome metrics
(e.g., TPD or SSS). Additionally, reliance on full-FOV SPECT volumes may hinder applica-
bility on scanners with truncated views or on protocols lacking dedicated scatter data.

Lim et al. [66] demonstrated the clinical feasibility of a U-Net-based DL model to per-
form CT-level AC on T1-201 myocardial perfusion SPECT without additional hardware or
radiation. Training on nearly a thousand stress/rest studies, the model translated NAC im-
ages into synthetic, attenuation-corrected images with sub-percent MAE, near-unity SSIM
(~0.99), and excellent Peak Signal to Noise Ratio (PSNR) (=34 dB). On segmental polar-map
analysis, the generated images fully restored inferior-wall counts to match CTAC references
and eliminated soft-tissue artifacts. In a focused observer study of diaphragmatic attenu-
ation, 95% of the synthetic images were scored as “similar” or “indistinguishable” from
CTAC studies. Strengths of this work include its use of clinically routine T1-201 protocols
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(where attenuation is worst), rigorous stress/rest training and testing, and both quantitative
and blinded visual validation. Limitations include its single-center, retrospective design
without external validation, lack of breast-attenuation cases to fully assess women, and as
yet unexplored performance in obese patients or on different camera models—areas that
warrant further prospective, multicenter study.

Yang et al. [67] introduced FA-ACNet, a novel 3D U-Net-based framework for CT-free
AC of cardiac SPECT that aligns multi-scale features extracted from NAC SPECT and low-
dose CT images to generate AC images comparable to CTAC references. They demonstrate
excellent quantitative performance (Mean Square Error (MSE) of 11.98 x 10~, SSIM of
0.9976, and PSNR of 45.54) in an independent test set and strong agreement in summed
perfusion scores (SSS/SRS bias < 0.2, 95% LoA within + 2.8), while providing visual
case examples and Bland-Altman analyses. However, the study’s single-center design,
reliance on one tracer (*™Tc-sestamibi) and one scanner model, and absence of an external
validation cohort restrict generalizability.

Chen et al. [68] systematically compared direct image-to-image and indirect p-map-
based DL strategies for CT-free AC in both dedicated cardiac and general purpose SPECT,
employing U-Net as a baseline and an advanced DuRDN architecture to process photopeak
and multi-window scatter inputs. They demonstrated that indirect approaches (predicting
truncated or full field-of-view p-maps prior to iterative reconstruction) achieve significantly
lower normalized MSE (NMSE) (1.20 £ 0.72% vs. 2.21 4+ 1.17% for dedicated SPECT)
and polar-map APE (3.24 £ 2.79% vs. 4.77 £ 3.96%) than direct methods, while DuRDN
consistently outperformed U-Net in artifact suppression and quantitative fidelity. The study
used tailored pipelines that recover out-of-FOV attenuation information for pinhole systems
and rigorous multi-metric evaluation, including voxel, segment, and defect-size analyses.

Yang et al. [69] presented a direct DL method for CT-less AC in dedicated cardiac
CZT SPECT, training a 3D convolutional encoder—decoder network to map non-corrected
SPECT volumes directly to CT-based AC reference images. In 10-fold cross-validation of
100 clinical studies, their DL outputs achieved a marked improvement over uncorrected
images: voxel-wise R? increased from 0.81 to 0.91, average segmental error from —6.1% to
+0.5%, and mean absolute segmental error halved to 3.3% (all p < 0.001). A key strength
of this work is its demonstration that a single DL step in image space can substantially
reduce soft-tissue attenuation artifacts, enabling rapid (~0.5 s) correction on stand-alone
CZT scanners without CT, line sources, or transmission scans, and potentially lowering
patient dose and streamlining clinical workflow. The proposed model sometimes over- or
under-corrected in atypical uptake patterns (as seen in worst-case examples), reflecting
reliance on training distribution and lack of explicit physics modeling.

Torkaman et al. [70] proposed SPECTGAN, a 3D conditional GAN that directly trans-
lates NAC cardiac SPECT volumes into AC. In 5-fold cross-validation of 100 dedicated CZT
SPECT/CT studies, SPECTGAN reduced normalized Root Mean Squared Error (RMSE)
from 0.226 to 0.141 (37.5% error reduction), boosted PSNR by 14.5%, and improved SSIM to
0.995 compared to 0.988 in uncorrected images.

In another study by Torkaman et al. [71], the authors addressed patient-to-patient
variability in direct SPECT attenuation correction by evaluating two DL approaches (Re-
sUNet and a Wasserstein CycleGAN) on 100 paired non-corrected/corrected scans via
leave-one-out cross-validation. Quantitative metrics (NRMSE, PSNR, SSIM) and visual
overlays showed the CycleGAN reduced global error by 8.9% and preserved background
anatomy without masking. To further stabilize performance, the authors clustered polar-
map features using t-SNE and BIRCH, then trained models on these homogeneous subsets;
this yielded up to a 36% reduction in NRMSE variability and a 6.4% overall NRMSE gain
when using data most similar to each test case.
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Hagio et al. [72] validated an AC CNN on 722 SPECT MPI studies from 74 international
sites and three scanner vendors in the phase 3 flurpiridaz-301 trial. They generated polar
maps from NAC, then quantified TPD and compared diagnostic performance against
invasive coronary angiography. The proposed method achieved a per-patient AUC of
0.752 versus 0.717 for NAC (p = 0.016), improving specificity by 6.2% and accuracy by 4.3%
without sacrificing sensitivity; results matched expert-reader SSS (AUC = 0.743, p = 0.913).
This multi-center validation demonstrates DLAC’s robustness across diverse hardware and
protocols. Limitations of this study included the lack of CT-based ground-truth attenuation
maps and the absence of non-image patient features (e.g., BMI subgroup analysis).

Chen and colleagues [73] evaluated DL estimation of attenuation maps for cardiac
SPECT/CT using a 3D U-Net fed with both photopeak and one of three scatter windows
(4%, 10%, or 30% width) and tested robustness at full-count versus quarter-count levels. The
work used 1517 patient studies (905 cases for training, 226 for validation, and 386 for testing).
Across all scatter configurations, DL-estimated maps agreed with CT-derived ground truth
within 2.1% NMSE (mean bias ~ 0), with SSIM = 0.94-0.99 and PSNR =~ 29-30 dB. Wider
scatter windows yielded marginally better map fidelity. When these DL maps were used
for AC SPECT reconstruction, slice NMSE fell from ~9% (no AC) to <1%, and polar-
map segmental uptake errors were <5%. Performance at 1/4-count was only slightly
degraded (NMSE map ~ 0.3%, AC slices ~ 0.05%). This study demonstrates that U-
Net-based DL can reliably infer patient-specific attenuation maps across varied scatter
sampling schemes and even from reduced-count data, obviating CT acquisition without
compromising quantitative accuracy.

Chen et al. [74] presented a CT-free AC method for cardiac SPECT utilizing a cus-
tomized 3D Dual Squeeze-and-Excitation Residual Dense Network (DuRDN), which inno-
vatively integrates non-image clinical features such as BMI, gender, and scatter window
images to enhance the model’s performance. A notable strength of this study is the explicit
incorporation of patient-specific variables, reflecting an advanced effort toward person-
alized imaging, and achieving a voxel-wise NMSE of 2.01 £ 1.01%, outperforming a
conventional U-Net (2.23 4= 1.20%). Moreover, visual comparisons between predicted and
ground-truth AC images confirmed qualitative consistency.

Ochoa-Figueroa et al. [75] assessed the clinical utility of a commercially developed
DL-based attenuation correction software (DLACS) for MPI using a CZT dedicated camera.
A major strength of the study is the use of ICA as the gold standard for validation, provid-
ing clinically meaningful endpoints rather than solely imaging metrics. The application
of DLACS improved the diagnostic specificity dramatically from 57% to 86%, while main-
taining high sensitivity (91%), resulting in an overall diagnostic accuracy increase from
87% to 90%. These results underscore the potential of DL to reduce false positives and
artifact-driven misinterpretations in MPI.

5. Comparative Review

This section provides answers to the research questions of the present study by sum-
marizing the findings of the qualified related work. Table 1 summarizes the characteristics
of each qualified study and Table 2 summarizes key findings.

5.1. Which DL Architecture and Algorithm Has Demonstrated the Highest Performance in AC?

According to the reviewed studies, three-dimensional conditional generative adver-
sarial networks (3D ¢cGANSs), particularly those featuring attention-gated U-Net generators,
have demonstrated the highest AC performance. Attention-gated mechanisms are com-
ponents within neural network architectures that enable the model to focus selectively
on the most informative regions of the input data while suppressing less relevant back-
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ground features. For the particular 3D cGAN topology for AC, attention gates embedded
in the U-Net generator highlight myocardial regions and attenuation-related structures
that are most critical for accurate reconstruction. This helps the network allocate its ca-
pacity more effectively, reducing noise and artifacts while preserving clinically important
perfusion patterns.

A 2023 study [64] employing a 3D attention-gated U-Net within a cGAN framework
achieved outstanding results, validated on two independent external cohorts totaling
604 patients, using diagnostic accuracy metrics such as AUC based on TPD. Another
high-performing model is the FA-ACNet, developed in 2025 [67], which is based on a
dual-encoder 3D U-Net architecture and reported strong internal performance metrics such
as SSIM, MSE, and PSNR. However, FA-ACNet lacked external validation. Overall, 3D
c¢GAN architectures and U-Nets, particularly those tested on external populations, appear
to demonstrate the most robust performance.

Across the reviewed literature, most direct image-to-image approaches optimize
voxelwise L1/MAE (sometimes combined with SSIM), whereas cGAN variants add an
adversarial term to promote perceptual realism. Explicit ablations were uncommon. A
notable exception is Huxohl et al. [62], who screened losses and discriminator designs and
reported their best results with L1 plus a classification discriminator (lowest NMAE on
held-out test data). While adversarial training can sharpen textures, the clinical endpoints
(e.g., TPD-based AUC or reader-oriented normalcy) are driven more by data diversity and
validation design than by a specific loss choice in isolation. Full analytic comparison of loss
landscapes and their bias-variance trade-offs are beyond the present scope, but we highlight
that robust performance has been achieved with relatively simple L1-dominant objectives.

5.2. To What Extent Do Studies Integrate Non-Image Data (e.g., Patient Demographics,
Clinical Parameters) into DL Models, and How Does This Inclusion Influence Model Accuracy
and Generalizability?

The integration of non-image data into DL models for AC is currently rare. Most
studies strictly utilize image-based inputs without incorporating patient demographics or
clinical parameters. Notable exceptions include a 2022 study employing a DuRDN which
incorporated features such as BMI, gender, and scatter window images [74]. Another study
utilized photopeak and scatter imaging windows as additional inputs, though demographic
information was absent [68]. Despite these efforts, there is little evidence that including non-
image features significantly enhanced model performance or generalizability. The models
demonstrating the strongest external validation results did not use any non-imaging data,
suggesting that current advances in model architecture and training design may outweigh
the marginal benefits of feature augmentation with patient-specific information.

5.3. What Quantitative Metrics Are Employed to Assess Model Performance and Error?

The reviewed studies employed many quantitative metrics to assess model perfor-
mance and error. Common voxel-based metrics included the SSIM, NMSE, MAE, NMAE,
PSNR, and Pearson correlation coefficients. Several studies also utilized Bland—Altman
plots and segment-wise percentage errors to evaluate performance at both voxel and
anatomical segment levels. For clinical relevance, receiver operating characteristic (ROC)
analysis, area under the ROC curve (AUC), sensitivity, specificity, and overall accuracy
were frequently employed, particularly in studies with external validation [64,72]. More
recent investigations emphasized clinical evaluation metrics. This reflects a trend toward
assessing the potential diagnostic utility of the models rather than relying solely on image
similarity measures.



Appl. Sci. 2025, 15, 11287

13 of 26

As detailed in Table 2, reported SSIM values were consistently high (>0.97), with
Lim et al. [66] and Prieto Canalejo et al. [61] reporting values near 0.99, suggesting strong
voxel-level agreement with CT-based references. NMSE values ranged from ~0.5% in Chen
et al. [74] to ~3.6% in Shi et al. [65], while PSNR values typically exceeded 30 dB. Torkaman
et al. [70] reported a PSNR of ~36.4 dB.

Beyond voxel-level metrics, several studies report effects that map directly to clin-
ical decision making. Shanbhag et al. [64] observed an AUC increase from 0.70 (NAC)
to 0.79 with DL-based AC and a rise in normalcy rate from 54.6% to 70.4%, indicating
fewer false positives in low-likelihood cohorts while matching CTAC performance (AUC
~0.81). In the multicenter Flurpiridaz-301 analysis, Hagio et al. [72] reported AUC 0.752
vs. 0.717 (DLAC vs. NAC) alongside +6.2% specificity and +4.3% accuracy, reflecting clini-
cally meaningful improvements at constant sensitivity. Prieto Canalejo et al. [61] showed
that semi-quantitative SSS categories changed in only ~3% of cases, supporting concor-
dance with reference AC. These results suggest that modest AUC deltas (~0.03—-0.10) can
correspond to material gains in specificity /normalcy that reduce artifact-driven positive
findings—an outcome with direct clinical impact.

5.4. Do Researchers Ultilize Established MPI Quantification Metrics, Such as Summed Stress Score
(5SS), Summed Difference Score (SDS), Summed Rest Score (SRS), or Total Perfusion Deficit
(TPD) to Evaluate the Quality of DL-Generated AC Images?

The use of established MPI quantification metrics such as SSS, SDS, SRS, and TPD
varied across studies. TPD was the most frequently reported clinical metric used in multiple
studies, particularly those emphasizing external validation [64,72] and clinical applicability.
SSS and SRS were occasionally employed, for example, in the evaluation of FA-ACNet [67],
but were not consistently reported. SDS was rarely analyzed independently and was
often absent even when other scores were utilized. Several studies, particularly those
focused on image-based DL approaches such as voxel-wise cGANSs, did not assess any
semi-quantitative perfusion scores, relying instead on voxel-level metrics. Thus, while
TPD and SSS are sometimes incorporated into evaluations, complete MPI quantification
remains underutilized.

This underutilization deserves particular attention, because it raises questions not
only about methodological convenience but also about the degree to which emerging
computational approaches align with clinical reality.

SSS, SDS, and SRS are underreported in AC studies due to the dependence of these
metrics on high-quality, clinically validated ground truth. DL models rely on CT-based
attenuation correction as the reference standard. However, CT-based correction itself is not
perfect. Misregistration due to respiratory or cardiac motion, beam-hardening artifacts from
implanted devices, and anatomical mismatches between emission and transmission data
can introduce distortions. Any systematic error is inevitably carried over to the evaluation
of the DL output.

Another reason for underutilization is that many studies are conceived and conducted
primarily by engineers, computer scientists, or imaging physicists, for whom the most
intuitive metrics of success are mathematical measures of similarity between reconstructed
and reference images. As a result, SSIM, MAE, and PSNR are not only easy to compute
but also familiar benchmarks for optimization. By contrast, semi-quantitative scores like
SSS or SDS require additional processing steps, clinical databases, and in some cases expert
review. They also require collaboration with cardiologists or nuclear medicine physicians,
who may not be directly involved in early technical development. As a result, clinical
metrics are sometimes treated as secondary or optional, rather than as primary indicators
of diagnostic value.
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Nevertheless, the limited use of these metrics represents a missed opportunity. Unlike
SSIM or PSNR, which quantify image fidelity in abstract terms, SSS, SDS, and SRS have
direct and well-established clinical significance. SSS provides a measure of the overall
perfusion defect under stress, SRS describes the extent of fixed defects at rest, and SDS
captures the reversible component, which is highly correlated with ischemia and hence
with the potential benefit of revascularization. These metrics predict adverse outcomes such
as myocardial infarction or cardiac death, and they underpin treatment decision-making
in everyday practice [76]. Their incorporation into the evaluation of DL models would
therefore fill the gap between technical performance and patient-level clinical impact. An
algorithm demonstrating high voxel-level similarity but failing to reproduce the correct
SDS value in a patient with inducible ischemia might appear successful but is clinically
misleading. Conversely, a model that slightly underperforms on SSIM but manages to
preserve SDS and SSS values would have far greater clinical utility.

Another important consideration is the role of these metrics in standardizing evalua-
tion across studies. Because SSS, SRS, and SDS are widely recognized by guidelines and
used globally [77], they could serve as a global standard for comparing the clinical validity
of different DL approaches.

It is also worth noting that the apparent marginalization of these metrics reflects prac-
tical barriers rather than inherent limitations. Some studies have attempted to incorporate
TPD or SSS into their validation, showing that it can be done when appropriate infrastruc-
ture and clinical collaboration exist. These efforts highlight that the underutilization is not
always due to irrelevance but rather to the additional resources required.

5.5. What Are the Typical Sizes and Compositions of Training and Validation Datasets Reported in
the Literature?

To provide a more complete overview of the selected studies, the dataset sizes, data
splits, metrics, and scanner types are summarized in Tables 1 and 2. The datasets varied
widely, ranging from fewer than 100 to more than 11,000 cases, with splits generally
between 60 and 80% for training and 15-20% for validation/testing.

Dataset sizes reported across the reviewed literature varied considerably. Only a few
studies reported datasets exceeding 1000 patients, such as the framework in [64] which in-
cluded 4886 cases for training. Most studies used medium-sized datasets ranging from 100
to 400 cases, employing simple splits into training, validation, test sets or cross-validation
procedures. Some studies, particularly early explorations of GAN-based methods for atten-
uation mapping, used very small datasets, sometimes fewer than 100 cases [63,65,69]. Data
splits generally followed proportions such as 70% training, 15% validation, and 15% testing.
Despite the variability in dataset size, relatively few studies engaged in truly large-scale,
multi-institutional data collection efforts.

5.6. How Frequently Do Studies Employ Independent External Populations for Additional Testing?

The use of independent external populations for additional testing was found in
only two studies [64,72]. Most investigations relied on internal data splits from a single
institution, sometimes labeling held-out internal subsets as “external” validation sets,
although they did not originate from distinct institutional sources. True independent
external validation was achieved in [64], which evaluated its model on external cohorts from
the University of Zurich and University of Calgary comprising 604 patients and in [72].



Appl. Sci. 2025, 15, 11287 15 of 26
Table 1. Classification of the reviewed studies based on methodological criteria.
First Ref. Study . DL
No. Author Year No. Design Camera Tracer Data Size Method
Single- Discovery NM/CT 670
1 Shi 2024 [66] cen%er (GE Healthcare, T1-201 985 studies U-Net
Milwaukee, WI, USA)
Sinele- Siemens Symbia T16 99mTe-
2 Hagio 2022 [60] n% . (Siemens Healthineers, Sestamibi 11,532 studies U-Net
cente Malvern, PA, USA) esta
Millenium Hawkeye VG
. Single- SPECT/CT system (GE 99mTc- .
3 Canalejo 2023 [61] center Healthcare, Milwaukee, sestamibi studies U-Net
WI, USA)
Sinele- Discovery NM/CT 570c 99mTe-
4 Yang 2021 [69] Cengter scanner (GE Healthcare, tetrofosmin 100 studies CNN
Milwaukee, WI, USA)
. Symbia Intevo (Siemens
5 Huxohl 2022 [62] Single- Healthineers, Hoffman N/R 150 studies GAN,
center U-Net
Estates, USA)
Discovery 570c or 99mTc-
Multi- Discovery 530c scanner sestamibi . GAN,
6 Shanbhag 2023 [64] center (GE Healthcare, or 9mTc- 5490 studies U-Net
Milwaukee, WI, USA) tetrofosmin
. NM/CT 850 (GE
7 Shi 2020 [65] Slr;ﬁli- Healthcare, Milwaukee, 6 tiglinTriin 65 studies [CJ;—?\IN’;
cente WI, USA) etrofos e
Single- NM/CT 670 (GE 99mTc-
8 Yang 2025 [67] ngt . Healthcare, Milwaukee, tamibi 202 studies U-Net
cente WI, USA) ses
. Discovery NM 570c (GE
9 Torkaman 2021 [70] Single- Healthcare, Milwaukee, 99rnTc—. 100 studies GAN,
center tetrofosmin U-Net
WI, USA)
99mTc-
. Multi- . sestamibi .
10 Hagio 2023 [72] center Multiple or 99mTe- 722 studies CNN
tetrofosmin
Dedlcatedl SPECT: Dedicated
Alcyone Discovery SPECT:
Single- NM/CT 57QC (GE 99mTc- 270 studies U-Net,
11 Chen 2022 [68] Healthcare, Milwaukee, .
center tetrofosmin General CNN
WI, USA)
SPECT:
General SPECT: 400 studi
NM/CT 850c studies
. Discovery NM/CT 570c
12 Torkaman 2022 [71] ilei%lei- (GE Healthcare, te ti(g)?;;rrcr;in 100 studies %Eﬁlt ’
Milwaukee, WI, USA)
. Discovery NM/CT 670
13 Mostafapour 2022 [63] iler;gtﬁ_ (GE Healthcare, se?s%c?nf?l;i 99 studies [é_ll\\gg ’
Milwaukee, WI, USA)
. Philips BrightView
14 Chen 2024 [73] Single- - ppiling, Amsterdam, The 201 1517 studies U-Net
center sestamibi

Netherlands)
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Table 1. Cont.
First Ref. Study . DL
No. Author Year No. Design Camera Tracer Data Size Method
. Discovery NM/CT 570c
15 Chen 2022 [74] i‘err‘lgtﬁ (GE Healthcare, tet?gg:;m 172 studies CNN
Milwaukee, WI, USA)
. D-SPECT (Spectrum
16 Qchoa— 2024 [75] Single- Dynamics, N/R 300 studies U-Net
Figueroa center
Caesarea, Israel)
Table 2. Summary of performance metrics. N/R: Not Reported; CV: Cross Validation.
Uses
Use of
. . Quantitative Uses
Study DL Data Split Metrics Patle'n't- Has Visual Analysis External
Method Specific Assessment A
(Clinical Dataset
Features .
Metrics)
o/ .m0 MAE: 0.003
[66] U-Net 80%:20% SSIM: 0.99 X v v X
[60] U-Net 60%:20%:20% R?: 0.85 X v v X
MSSIM: 0.97 + 0.001
[61] U-Net 320:66 NMAE: X v v X
3.08 £ 1.26 (%)
RZ: 0.91
[69] CNN 10-fold CV Segmental X v X X
error: 10%
GAN, o) A0/ 150 NMAE:
[62] U-Net 70%:15%:15% 0.020 - 0.007 X v X X
[64] GAN, 4581?3)?2(;2 fg;e Median Absolute X v v v
U-Net . Error in TPD: 1.2
(other sites)
GAN, ] NMAE:
[65] U-Net 4025 3.60% + 0.85% X v x X
5-fold CV:
MSE:
16.94 +2.03 x 10~°
5-fold CV on SSIM: 0.9955
[67] U-Net 167 studies— PSNR: 43.73 £ 0.50 X v v X
25 test Test set:
MSE: 11.98 x 10~°
SSIM: 0.9976
PSNR: 45.54
NRMSE:
0.1410 £ 0.0768
GAN, PSNR:
[70] U-Net 5-fold CV 36.3823 + 3.7424 X v X X
SSIM:
0.9949 =+ 0.0043
No reported
722 test (the comparison metrics.
model was AUC was 0.752 for
[72] CNN trained with identification of X v v v
11,532 studies obstructive stenosis
of [60]) using the model’s

AC images
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Table 2. Cont.
Uses
Use of ..
- . Quantitative Uses
Study DL Data Split Metrics Patle‘n‘t Has Visual Analysis External
Method Specific Assessment .
(Clinical Dataset
Features .
Metrics)
. Dedicated SPECT:
Dgggétﬁd NMSE: 1.20 + 0.72%
U-Net, . APE: 3.24 £+ 2.79%
[68] 100:20:150 2
CNN R* =0.9499
General SPECT:
240:60-100 General SPECT:
o NMSE: 2.57 + 1.06%
leave-one- NRMSE:
(71] U-Net, subject-out 0.135 4 0.064
GAN Cross- PSNR: 36.615 + 3.45
validation SSIM: 0.995 + 0.004
U-Net, ) ME: —4.41 +11.8
[63] CNN 99:19 SSIM: 0.98 + 0.05
[73] U-Net 1131:386 NMSE: 0.5%
[74] CNN 100:30:42 NMSE: 2.01 + 1.01%
300 studies (the
[75] U-Net moc.iel is No .reported .
pretrained by ~ comparison metrics.

the vendor)

6. Clinical Applicability and Challenges

The review revealed direct and indirect strategies to transform NAC to AC using DL.
Direct image-to-image approaches translate NAC inputs into AC images in image space,
requiring no changes to the reconstruction pipeline and yielding fast inference [78]. Their
limitations are reduced interpretability and potential global count bias. Indirect approaches
predict attenuation () maps that are then used within iterative reconstruction (e.g., OSEM),
preserving physics consistency and enabling quality control on the p-map. However, they
can be sensitive to truncated fields-of-view and require re-reconstruction.

Variability in reconstruction pipelines (iterations/subsets, post-filters, resolution recov-
ery, scatter correction) can dominate apparent performance gains. Because many DL-AC
models are trained and tested under a single reconstruction recipe, improvements may
not persist when parameters are altered within reasonable clinical bounds. We advocate
sensitivity analyses across a grid of reconstruction settings and explicit reporting of all pa-
rameters. Demonstrating that segmental bias and patient-level indices remain stable across
these settings would strengthen claims of robustness and facilitate translation across sites.

Across comparative evaluations, indirect p-map methods tended to achieve lower
NMSE/APE and better segmental agreement (e.g., DuRDN vs. U-Net), while state-of-the-
art direct cGANs matched clinical endpoints such as AUC/TPD on external cohorts.

Despite evidence of each effectiveness, the clinical adoption of DL-based attenuation
correction methods in SPECT MPI remains limited.

Across studies, 3D attention-augmented U-Nets and cGANSs consistently reduced
attenuation artifacts and closely matched CT-AC on patient-level indices when evaluated
beyond the training site. In contrast, p-map prediction pipelines tended to excel on voxel
and segment level agreement, highlighting their strength for fine-grained spatial fidelity
rather than whole-patient metrics. Dataset scale and diversity played a major role, with very
large single-center collections delivering strong internal performance but offering limited
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coverage across vendors and acquisition protocols. Smaller multi-site evaluations provided
a better probe of real-world generalizability by exposing models to varied scanners, patient
populations, and workflow differences. Persistent gaps remained, including scarce external
validation, heterogeneous reporting metrics that hinder direct comparison across papers,
and a dependence on CT-derived targets that can propagate CT errors into the downstream
deep learning outputs. Addressing these gaps will require standardized benchmarks,
broader cross-institutional testing, and reference strategies that do not simply inherit
limitations from CT ground truth.

A brief summary of limitations can be found in Table 3. The key limitation is the lack
of external validation in most reviewed studies. Internal validation alone cannot ensure
consistent performance across diverse patient populations, imaging systems, and institu-
tional protocols. Studies have mitigated limited paired datasets through augmentation and
by leveraging multi window inputs that encode scatter information. In practice, these miti-
gations only partially substitute for genuine diversity in paired data. Augmentation cannot
emulate vendor physics, tracer kinetics, or motion patterns. On the other hand, synthetic
p-maps and transfer learning are sensitive to shifts in reconstruction or camera geometry
and cross-center splits without protocol heterogeneity can overstate robustness. As such,
interpretability artifacts (e.g., over-correction in the inferior wall) may go unnoticed, and
reproducibility across institutions remains uncertain without standardized reporting and
shared benchmarks.

Table 3. Key gaps in the literature.

In Short Description
Most studies rely only on internal validation; very few use
External Evaluation independent external cohorts, making generalizability
uncertain.

No models have been prospectively integrated or tested in
Integration routine clinical workflows, so real-world usability is
unproven.

Models are often trained on data from a single vendor
Compatibility (e.g., GE cameras), and robustness across different scanner
types (Siemens, CZT, IQ-SPECT) is unknown.

There is a lack of large-scale, multi-institutional
Multi-center studies collaborations to test robustness across diverse patient
populations and acquisition protocols.

Since CT-based AC is used as ground truth, errors from
misregistration or artifacts may be reproduced by DL
models. Physics-informed methods could mitigate this but
are underexplored.

CT error propagation

Patient-specific features (e.g., BMI, gender, chest size) are
Non-image data rarely incorporated, despite potential benefits for
contextual accuracy.

No consensus exists on evaluation metrics; studies use
Standardized metrics heterogeneous criteria (SSIM, PSNR, AUC, TPD, etc.),
hindering comparisons and clinical adoption.

Multi-center studies that test model robustness across different scanner types, acqui-
sition protocols, and patient demographics, are needed. Without such efforts covering
multiple hospitals, it is difficult to ensure consistent diagnostic performance and reliability.

None of the studies reported prospective integration or evaluation of these models
in routine clinical settings. As a result, real-world clinical performance, user acceptance,
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and integration into decision-making workflows remain untested. The absence of clinical
trials or longitudinal outcome studies restricts our understanding of how these tools
might influence diagnostic and therapeutic decisions [79-81]. Also, existing DL models
have not been tested for compatibility with commercial SPECT systems and software.
AUC improvements are informative but insufficient to establish clinical utility. Future
evaluations should include multi-reader, multi-case (MRMC) ROC or JAFROC studies
that quantify inter-reader variability and reader—algorithm interaction. Stratified case sets
that emphasize challenging subgroups (e.g., high BMI, breast attenuation, diaphragmatic
artifacts, implanted devices) will better reflect day-to-day practice. Reporting reader
operating points, variance components, and effect sizes allows comparison to customary
gains from CT-AC and clarifies whether DL-AC meaningfully alters diagnostic decisions
rather than merely improving pixel-level similarity.

Many high-performing networks were trained exclusively on General Electric solid-
state cameras. Hence, their robustness on Siemens IQ-SPECT or CZT pinhole systems is
unknown [64]. Models focused on pinhole geometry show excellent NMSE on 1Q-SPECT
scanners yet may underperform on parallel-hole systems [62]. Domain shift also arises from
radiotracer choice (e.g., TI-201 versus **™Tc) and from protocol factors such as stress/rest
gating, none of which are routinely represented in current training sets.

An overlooked concern is that of error propagation [82] from the CT ground truth. If
the reference images are subject to misregistration or beam-hardening artifacts, DL models
will likely reproduce them. Physics-informed losses [83] that penalize violations of mass
conservation or impose Beer-Lambert constraints [84] could mitigate this, but have yet to
be systematically explored.

Most proposed models ignore non-image clinical data, like patient-specific characteris-
tics (BMI, gender, myocardial perimeter), which, if properly incorporated, might enhance
performance and contextual understanding.

The creation of an open, vendor-neutral repository containing paired NAC/CT-AC
volumes from at least three camera types, two tracers, and 5000+ patients would catalyze
development of robust DL models and will serve as global reference. Each case should
include clinical outcomes (ICA or FFR) plus demographic variables such as BMI and chest
circumference, reflecting the enhanced-feature DuRDN study [74]. Evaluation should
be based on four levels. First, voxel-wise performance metrics, such as SSIM. Second,
segment-level evaluation using the 17-segment polar map with per-segment bias limits and
quantification metrics such as SSS, SRS, SDS. Third, patient-level ROC for obstructive-CAD
detection. Last, visual inspection by independent radiologists, cardiologists, or nuclear
medicine experts. Because attenuation correction directly alters quantitative readouts, cali-
bration and decision utility should be reported alongside discrimination. Well-calibrated
segmental scores and TPD ensure that identical thresholds imply comparable downstream
actions before and after DL-AC. Decision-curve analysis and net benefit quantify whether
a model improves patient-level decisions across plausible threshold ranges, while reclas-
sification indices test if patients are moved into more appropriate risk strata. Small AUC
gains may correspond to large changes in avoidable catheterizations or repeat testing when
thresholds are explicit and calibrated.

To achieve this, a coordinated multi-center collaboration would be required, ideally
involving academic hospitals, industry partners, and professional societies. Practical steps
include establishing standardized data-sharing agreements and federated governance mod-
els that ensure patient privacy while enabling research access. Anonymization pipelines
and de-identification tools must be integrated into the workflow to remove personally iden-
tifiable information while retaining critical clinical and acquisition metadata. Harmonized
annotation protocols and uniform formats for NAC/CT-AC pairs would also be essential



Appl. Sci. 2025, 15, 11287

20 of 26

to guarantee interoperability across vendors. In addition, cloud-based repositories with
controlled access could facilitate secure sharing, while federated learning frameworks may
allow models to be trained collaboratively without direct data transfer.

Finally, the current methodology lacks standardized performance metrics, evaluation
frameworks, or a protocol for model selection and testing. While metrics like SSIM, PSNR,
and AUC are commonly reported, their clinical relevance varies, and study comparisons
remain inconsistent.

Cardiologists seldom find PSNR or SSIM persuasive, because what they need is an ex-
planation of where and why the algorithm altered the uptake. DeepAC’s voxel-level change
maps reduced median correction from 9.4 to 2.4 counts compared with CT-AC, providing
a visual audit trail [64]. Building on that concept, saliency-guided U-Nets have begun to
overlay attention heat-maps on polar plots, highlighting diaphragmatic or breast attenua-
tion that drives the correction. Uncertainty quantification offers a complementary safety
net: Monte-Carlo dropout applied to DuRDN outputs revealed 3-to-4 x higher predictive
variance in right-ventricular myocardium, alerting readers to potential artifacts [68].

A standardized evaluation framework should cover four areas [85]. Technical fidelity
at the voxel level can be assessed with SSIM, PSNR, NMSE, NMAE, and correlation coef-
ficients, supported by histogram analysis of voxel intensity distributions in myocardium
versus background and Bland-Altman plots for agreement with CT-based attenuation
correction. Anatomical or segmental accuracy should be evaluated using 17-segment AHA
polar map bias or mean absolute percentage error per segment, correlation coefficients
between DL-AC and CT-AC at the segment level, and stratification of errors by anatomical
regions such as inferior, anterior, or lateral walls, with statistics presented alongside 95%
limits of agreement. Clinical validity requires the use of established myocardial perfu-
sion scores including SSS, SRS, SDS, and TPD. Generalizability and robustness should
be demonstrated through external validation on independent datasets from at least one
external institution, testing across different scanner vendors such as GE, Siemens, and
CZT IQ-SPECT, and evaluation across tracers such as technetium-99m and thallium-201.
Subgroup analyses should cover patient characteristics including body mass index, sex,
chest circumference, and the presence of implanted devices. Models should further in-
clude uncertainty quantification through predictive variance maps and voxel-level change
analysis [86]. At minimum, results from one external test cohort, subgroup analyses for
high-BMI and female patients, and uncertainty or explainability maps should be provided.
Studies should comply with pre-defined Al-reporting criteria [85,87-93].

7. Conclusions

DL has demonstrated potential to transform attenuation correction in SPECT my-
ocardial perfusion imaging by reducing reliance on CT, improving diagnostic accuracy,
and simplifying clinical workflow [94]. Robust DL-AC could reduce false positives from
soft-tissue artifacts, expand access where CT hardware or dose budgets are constrained,
and simplify workflow. Among existing methods, attention-enhanced U-Nets and condi-
tional GANs show the most promising performance, particularly when validated against
independent datasets. However, clinical translation remains constrained by limited exter-
nal validation, heterogeneous evaluation metrics, and minimal integration of non-image
patient data.

A notable finding from this review is the imbalance between very large single-center
datasets and small cohorts. Large used datasets enable robust training but are often lim-
ited to one scanner type and vendor, whereas smaller studies provide methodological
innovation but lack external validation. Similarly, evaluation metrics remain inconsistent
across studies. Voxel-level similarity indices (SSIM, PSNR, NMSE) were almost universally
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reported, but established perfusion scores such as SSS, SRS, or SDS were rarely incorpo-
rated. To ensure reliability and adoption, future research must emphasize standardized
performance criteria that incorporate established MPI quantification scores (SSS, SRS, SDS,
TPD), conduct multi-center validation across diverse scanners and tracers, and explore
prospective clinical testing [95].

Investigators should define non-inferiority margins to CT-AC and stratify results by
vendor, tracer, BMI, and sex. Public benchmarks at scale through multi-center and multi-
vendor reference datasets with harmonized preprocessing and challenge style leaderboards
that score methods under identical conditions, are needed. Development should advance
privacy-preserving generalization using federated learning, domain adaptation, and har-
monization to leverage diverse sites without moving data, and external testing must use
held-out institutions [96].

Finally, for tools that directly modify quantitative readouts, interpretability (change-
maps, saliency on polar plots) and calibrated uncertainty are essential for reader trust and
safety checks.

Author Contributions: Conceptualization, I.D.A.; methodology, I.D.A. and N.I.P; validation, LD.A.,
N.IP, ELP. and D.J.A.; investigation, .D.A.; data curation, LD.A. and N.I.P.; writing—original draft
preparation, I.D.A.; writing—review and editing, N.LP,, D.J.A. and E.LP. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Full form

AC Attenuation Correction

ACM Attenuation Correction Map

APE Absolute Percentage Error

AUC Area Under the Receiver Operating Characteristic Curve
BMI Body Mass Index

CAD Coronary Artery Disease

CI Confidence Interval

CNN Convolutional Neural Network

CT Computed Tomography

CTAC CT-based Attenuation Correction

CTA Computed Tomography Angiography

CZT Cadmium-Zinc-Telluride

cGAN Conditional Generative Adversarial Network
CycleGAN Cycle-Consistent Generative Adversarial Network
DeepAC Deep Learning-based Attenuation Correction

DL Deep Learning

DLAC Deep Learning Attenuation Correction

DLACS Deep Learning Attenuation Correction Software
DuRDN Dual Squeeze-and-Excitation Residual Dense Network
FA-ACNet Feature-Aligned Attenuation Correction Network

FDA Food and Drug Administration
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FOV Field of View
GAN Generative Adversarial Network
GENAC Generated Attenuation-Corrected
ICA Invasive Coronary Angiography
ICC Intraclass Correlation Coefficient
IQ-SPECT Siemens IQ-SPECT Collimator System
LEHR Low-Energy High-Resolution
LoA Limits of Agreement
MAE Mean Absolute Error
ME Mean Error
MPI Myocardial Perfusion Imaging
MSSIM Mean Structural Similarity Index
MSE Mean Square Error
NMAE Normalized Mean Absolute Error
NMSE Normalized Mean Square Error
NAC Non-Attenuation Corrected
NRMSE Normalized Root Mean Square Error
PET Positron Emission Tomography
PSNR Peak Signal-to-Noise Ratio
PRAC Post-Reconstruction Attenuation Correction
ResNet Residual Neural Network
ResUNet Residual U-Net
ROC Receiver Operating Characteristic
R? Coefficient of Determination
SDS Summed Difference Score
SRS Summed Rest Score
SPECT Single-Photon Emission Computed Tomography
SSS Summed Stress Score
SSIM Structural Similarity Index
TPD Total Perfusion Deficit
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