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Abstract. Coronary artery disease (CAD) is the primary cause of death and
chronic disability, among cardiovascular conditions worldwide. Its diagnosis is
challenging and cost-effective. In this research work, Fuzzy Cognitive Maps with
Particle Swarm optimization (called FCM-PSO) were used for CAD classifica-
tion (healthy and diseased).. In particular, a new DeepFCM framework, which
integrates image and clinical data of the patients is proposed by employing the
FCM-PSO method enhanced by experts” knowledge along with an efficient at-
tention Convolutional Neural Network to improve diagnosis. The proposed
method utilizes 571 CAD instances and achieved 77.95+5.58 accuracy,
0.22+0.05 loss, 76.98+8.27 sensitivity, 77.39+7.13 specificity and 73.97+0.09
precision, implementing a 10-fold cross validation process. The results extracted
from the proposed model demonstrate the model’s efficiency which outperforms
traditional machine learning algorithms. An essential asset of the proposed Deep-
FCM framework is the explainability as it offers nuclear physicians meaningful
causal relationships between clinical symptoms and the diagnosis, helping them
in decision-making regarding CAD.

Keywords: Fuzzy Cognitive Maps, Particle Swarm Optimization, Classification,
Coronary artery disease.

1 Introduction

Obstructive Coronary Artery Disease (CAD) is the most frequent type of cardiovascular
disease, and it occurs when at least one of the coronary arteries are blocked, which leads
to the reduction of blood inserting into the myocardium, causing stenosis. CAD is a
life-threatening disease. It requires early appropriate diagnosis and treatment to im-
prove a patient’s condition and deflect death. Consequently, it is crucial to detect the
existence of stenosis and the danger of its advancement [1].

With respect to the previous studies regarding Fuzzy Cognitive Map (FCM) imple-
mentation for medical data classification, the following research studies have been an-
alyzed. Papageorgiou et al in [2] developed a FCM model for brain tumor characteri-
zation utilizing the Activation Hebbian Algorithm, which utilizes initial experts’



knowledge. The proposed model defines the degree of tumor abnormality, with only
qualitative data as input. The model achieved 90.26% and 93.22% accuracy for brain
tumor of low-grade and high-grade, accordingly and outperformed other intelligent
techniques. Nasiriyan-Rad et al. in [3] presented a new method for grading Celiac dis-
ease (CD) with the combination of FCM and Support Vector Machine (SVM), with
Particle Swarm Optimization (PSO) for enhancing the results. The performance of the
proposed model was compared against the fuzzy rule-based Bayesian Networks (BN),
where FCM-SVM model performed better achieving accuracy of 87%, 86% and 8%
for each of three possible CD grades. Papageorgiou et al. in [4] introduced a new ap-
proach for FCM learning, utilizing ensemble-based learning approaches, which is based
on non-linear Hebbian learning (NHL) for autism classification. The proposed model
outperformed in contrast to FCM models that support their training procedure on
Hebbian-based learning algorithms, with 89.41% accuracy while data driven NHL ex-
tracted 79.62%. Papageorgiou et al. in [5] presented FCMs for decision making in med-
ical domain, regarding thyroid diagnosis. The developed model achieved 89.80% ac-
curacy, regarding thyroid diagnosis. Carvajal et al in [6] aimed to develop a General
Type (GT2) Fuzzy Logic (FL) classifier for pulse levels and optimize the general type-
2 membership functions parameters with the usage of Ant Lion Optimizer a metaheu-
ristic algorithm. The dataset includes 4240 patients acquired from the Framingham Da-
tabase and the hold out method is applied for the splitting of training and testing data.
The GT2 FL classifier outperforms with average 99% accuracy for all experiments than
interval-type-2 and type-1 fuzzy classifiers. Guzman et al in [7] aimed to develop a
type-2 fuzzy system with triangular membership for the classification of blood pres-
sure. The model attained 99.408% classification rate with type-2 fuzzy system utilizing
triangular membership functions, where the type-1 classifier in previous study reached
98%. Miramontes et al in [8] proposed a dynamic parameter adaptation with the inclu-
sion of the Bird Swarm algorithm (BSA) based on type-2 fuzzy systems. The proposed
model achieved 97% classification accuracy and performed better compared to other
methodologies. Hoyos et al in [9] proposed a clinical decision-support system based on
Fuzzy Cognitive Maps architecture to classify patients that suffer from dengue. The
developed model compared to other machine learning approaches and outperformed
with 89.4% accuracy, while providing analysis of factors and explainability of decision
of results.

The contribution of this research is the development of a DeepFCM model utilizing
Particle Swarm as an optimization technique for the provision of an automatic classifi-
cation tool that diagnoses CAD non-invasively and is based on both image and clinical
risk factors. The classification problem is two-class, and it is devoted to the presence
of CAD. The added value of this research is the proposal of an explainable tool that
provides interpretability, which is an important factor in sensitive areas like healthcare,
compared to machine learning approaches, where they are known as “black boxes”.
The FCM presents analysis of relationships among features, where we can detect signs
of CAD before the clinical diagnosis and recommend precautionary treatment to avoid
complications and mortality [9].The results show our model’s high consistency and ro-
bustness, denoting that the proposed model can be adjusted in nuclear medicine domain
and assist in decision making, as far as CAD diagnosis is concerned.



2 Material and Methods

2.1 CAD dataset

The corresponding dataset consists of 571 instances, where 248 cases are classified as
pathological and 323 are as normal. Of the total dataset, 79.68% were male and regard-
ing patients’ age, they ranged from 32 to 90. Concerning Body Mass Index (BMI) is in
spectrum of 16.53, which falls into underweight category to 87.2 which is categorized
as extremely obese.

The patients underwent gated-SPECT-MPI (Single Photon Computed Tomography-
Myocardial Perfusion Imaging) and Invasive Coronary Angiography (ICA) after 60
days of MPI procedure. This process shapes a patient’s status regarding the CAD diag-
nosis and the result is utilized as ground truth in our study.

The dataset of this study was obtained from the Clinical Sector of the Department of
Nuclear Medicine of the University Hospital of Patras from 16/2/2018 to 28/02/2022.
Dataset acquisition is authorized by the ethical committee of University Hospital of
Patras. All patients were given authorization for their results to be obtained anony-
mously. The performed methods agree with the Declaration of Helsinki.

The available dataset contains information about patient’s status like age, sex, BMI,
and furthermore medical characteristics like diabetes, previous CAD condition, etc. The
features used as input by FCM classification model, after binary normalization are
twenty-two: (1) Sex, (2) Age, (3) BMI, (4) known CAD, (5) previous AMI, (6) pre-
vious PCI, (7) previous CABG, (8) previous STROKE, (9) Diabetes, (10) Smoking,
(11) Hypertension, (12) Dyslipidemia, (13) Peripheral Angiopathy, (14) Chronic Kid-
ney Disease, (15) Family History of CAD, (16) Asymptomatic,(17) Atypical Symp-
toms, (18) Angina-like, (19) Dyspnea on Exertion, (20) Incident of precordial pain, (21)
ECG, and (22) Preliminary Expert Diagnosis.

Furthermore, polar map images were used for CAD diagnosis, implementing an ef-
ficient VGG method, which provides an output, called CNN prediction.

2.2 Methodology

2.2.1 Fuzzy Cognitive Maps

FCMs were introduced by Kosko [10] in 1986 and they are an advanced version of
cognitive maps. Cognitive maps contain a typical system with set of nodes/concepts
and connections between the concepts that describe cause and effect relationships. In
the interest of overcoming the binary logic, Kosko developed FCMs, evolved versions
of CMs, which consist of fuzzy rules for the calculation of concepts. The FCM archi-
tecture which is similar to an Artificial Neural Network, is a soft computing tool that
mimics the human process of making decisions [11] [2]. FCM utilizes all the accessible
knowledge and translates it in the form of concepts and interconnections between them.
Concepts represent the characteristics/states of the examined system whereas intercon-
nections denote the cause-effect relationships with the rest of the concepts. Whether an
interconnection has positive or negative value depends on the kind of connection. More



specifically, the interconnections between the concepts are the weighted links of the
FCM and are in the range [-1, 1] [2] [3].

In functional terms, FCM involves a set of concepts and a weight matrix. With ref-
erence to the links between the concepts, they display the direction and the effect of
each node with the rest of the nodes. The connection can be positive or negative or have
zero value. The construction of an FCM involves the definition of concepts and the
equation of calculating the future values of concepts according to historical data. The
fundamental equation for computing FCM concepts is eqg. (1). To normalize the pre-
dicted value of concepts into a specific range, a transfer function is used. Generally, the
sigmoid, or the trivalent function is preferred.

K+1 K K
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where, AEK”) is the value of the concept iteration (k+1) and A}K) is the concept at the

iteration k and f is the sigmoid function.

The strength of FCMs in general is that they consider the last state of each concept
to calculate the future value. Regarding FCM learning, it is based on the construction
of a weight matrix, utilizing unsupervised techniques with Hebbian adaptation, super-
vised with the inclusion of evolutionary algorithms and gradient methods. Well-known
methods of FCM learning using historical data are RCGA and PSO.

222 Design of FCM model using experts’ knowledge

The FCM model consists of 23 concepts which are clinical features, with one output
regarding CAD presence, which consists of two classes, pathological and normal. The
22 input features indicate personal characteristics and clinical symptoms of patient sta-
tus. All concepts’ values have value 0 or 1, depending on whether they suffer from
each disease, with the exception of Age and BMI, where their values are normalized
and their values are rescaled into the spectrum of [0,1]. Nuclear Experts assigned lin-
guistic values (represented by fuzzy sets) on the interconnections between inputs and
output concepts. Table 1 gathers the fuzzy relationships among some of the most influ-
ential concepts with respect to the output. In particular, the following fuzzy sets were
defined: very weak (VW), weak (W), medium (M), strong (S) and very strong (VS).
For each linguistic value we assigned a specific range of values as it is reported in the
literature [12], in order to perform FCM learning considering the respective ranges. For
the fuzzy sets Very Weak (VW) and Weak (W) we determined the ranges to be [0 - 0.3]
and [0.15 - 0.5] accordingly. Also, for Strong (S) and Very Strong (VS) we assigned
the values to be randomly selected from [0.5 — 0.85] and [0.7 — 1] accordingly. Con-
cerning the negative linguistic values, we adjusted the provided values according to the
positive ones. For the rest of the relationships, where no experts’ knowledge is pro-
vided, they take random values within the range [-1, 1].

Table 1. Presentation of extracted ranges for the relationship between input concepts with input
concepts and with output obtained from nuclear experts.

Relationships Assigned by experts Relationships Assigned by experts




Sex>>Output M Hypertension>>Output M
Dyslipidemia>>Output M
AGE>>ECG W Angiopathy>>Output M
BMI>>Output W Chronic Kidney Disease \W
Known CAD S Family History of w
CAD>>Output
previous VW Asymptomatic>>Output -S
AMI>>Output
previous W Atypical symp- VS
PCI>>Output toms>>ECG
previous w Atypical Symp- M
CABG>>Qutput toms>>ECG
Previous M Angina Like>>Output S
Stroke>>
Diabetes>>Out- S Dyspnea on exer- M
put tion>>Output
Smoking>>Out- M Incident of precordial M
put pain>>Qutput
Expert_Diagnosis_Bi- VS
nary>>Output

2.2.3 Learning FCM with Particle Swarm Optimization

Particle Swarm Optimization (PSO) [13] is an optimization methodology that was in-
troduced in 1995 [3]. PSO utilizes a small number of parameters [3]. Regarding FCM
learning, PSO is applied for the adjustment and calculation of relationships among the
concepts. The definition of weight matrix, which consists of the relationships among
all concepts is a crucial step and determines FCM’s performance. The ideal state of the
interconnections with output concepts is to rely within the suggested linguistic values
provided by experts and also the produced weight matrix to be in a steady state. In
general, PSO is utilized for the minimization of objective function by implementing the
following steps. Initially a swarm of particles is being generated, where their values of
position and velocities are assigned randomly and are evaluated from the objective
function. The produced weight matrix of every particle is evaluated and if produces
better results than the rest particles, velocity and position are updated. The weight ma-
trix that globally minimizes the objective function of the corresponding particle is the
winner particle [14]. Applying PSO to FCM learning improves FCM’s performance
and intensifies FCM ability to classify correctly. The application of PSO improves the
FCM’s ability to adjust the weight matrix correctly with optimization techniques, and
as a result, FCM will not be supported only on historical data and bias related to bias
will be avoided.

224 DeepFCM

In our model we added input predictions from image data representing CAD cases,
to improve FCM’s performance. For this reason, we trained an attention-based VGG19
network with the Polar Map images. This modified version includes attention blocks
and branch-diverging (BD) paths to improve performance. The attention blocks aim to



focus on important image regions during feature extraction by multiplying the features
with a weight mask that highlights regions of interest. This is achieved by creating a
small CNN that takes the features as input and outputs a mask that is then used to weigh
the original features. The BD paths, on the other hand, aim to capture more diverse
features by creating multiple branches that diverge from the main CNN path and then
recombine the features later in the network. This helps the model to learn more complex
patterns and improves its generalization capabilities. Finally, the model is trained to
classify images into different categories using the categorical cross-entropy loss func-
tion and the Adam optimizer.

After making predictions on new images, the model's outputs are supplied to the
FCM model. In this context, the FCM uses the predicted probabilities as input, along
with clinical data, to make the prediction. By combining both imaging and clinical data,
this approach provides a comprehensive and integrated approach to diagnosis, poten-
tially improving accuracy and reducing the need for invasive tests.

Combining both predicted probabilities and clinical data, our proposed model named
DeepFCM utilizes FCM methodologies and PSO as an optimization tool and Deep
learning capabilities to correctly classify CAD cases. DeepFCM is an explainable
method providing interpretability, clarification, and transparency of results to reduce
complexity and scalability of other methods.

225 Methodological framework

This study aims to implement an FCM model, where PSO is applied as optimization
technique with the usage of clinical and image data to classify CAD instances into
pathological and normal and offer an automatic decision-making tool to nuclear medi-
cine experts. In order to conclude to the final structure of our model a thorough explo-
ration has been conducted with different techniques and various approaches for the in-
itialization of weight matrix and for the overall methodology. Our proposed model
DeepFCM has demonstrated remarkable performance and impressive capabilities,
while providing interpretability and explainability.

With the acquired clinical data and prediction probabilities a transformed dataset has
been generated. Data preprocessing techniques are applied for the normalization of val-
ues. For the stability and generability of results 10-fold cross validation is performed to
the corresponding dataset. FCM utilized PSO as an optimization technique since its
results are efficient with respect to??. With the application of PSO, along with the sug-
gested linguistic values obtained from nuclear experts, the optimal weight matrix has
been attained, which consists the produced interconnections among input-input and in-
put-output concepts and the training procedure has been concluded. Regarding the test-
ing dataset, the produced weight matrix is utilized and the predicted values from the
DeepFCM framework are compared with the actual values of the output of the testing
for the comparison metrics to be computed.

In Figure 1, we demonstrate the total process of our proposed methodological frame-
work.  The developed DeepFCM model is provided on GitHub
[https://github.com/AnnaFeleki/FCM-PSO-learning].
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Fig. 1. Proposed methodological framework of our proposed model DeepFCM.

3 Results

To conclude to the proposed architecture, various experiments were performed, and a
comparison was conducted with different approaches regarding initial values for weight
matrices. For comparison purposes, traditional machine learning algorithms were also
applied to the provide dataset to evaluate each model’s metrics. In all experiments 10-
fold cross validation was performed, to confirm its consistency.

For model evaluation and performance testing, the selected metrics are accuracy,
loss, sensitivity, specificity, and precision. Accuracy is the fraction between the correct
instances with all instances. A small loss is desirable denoting a less huge deviation in
predicted results, compared to actual values [14]. Sensitivity and specificity represent
the percentage of true positives and true negatives, respectively [14]. Precision indi-
cates the ratio of the number of true positives to the total number of positive predictions
[15].

We followed the inspection of the equilibrium point's exact position, where the FCM
presented a steady state by experimenting with different epochs. The epochs tested are
in the range 15 to 120. The results regarding accuracy and loss for the examined number
of epochs are depicted in Figure 2. It is observed that the best value for the epochs and
the equilibrium point for the proposed FCM is 35, which is achieved in the position of
the highest accuracy and the lowest loss.



Figure 2. Performance of proposed model with different epochs, regarding (a) Accuracy (b)
Loss
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The values of the performance metrics for the proposed FCM model, for each run, are
illustrated in Table 3. The spectrum of the initial interconnections of concepts with the
output was given by experts. The proposed ranges was inserted in the code while the
weights matrices were initialized with the corresponding spectrum for each concept.
The results concerning the most robust metrics were extracted after 10-fold cross vali-
dation is applied. It is concluded that the FCM model achieved sufficient performance,
in terms of accuracy and sensitivity. For comparison reasons, the previous experiment
was repeated, but this time, with randomly produced relationship between the input and
output concepts, within the range [-1, 1]. The produced values of the same metrics are
presented in Table 3. Additionally, for a further in-depth evaluation of the proposed
model a comparative analysis has been made between the proposed FCM and robust
machine learning algorithms such as Bayes, Random Forest, Decision Tree and Neural
Network in their default specifications. Regarding Neural network architecture we ex-
perimented with different network configurations, for example number of nodes, num-
ber of layers, optimization algorithms, and activation functions. The optimal parameters
of the final model were 3 three hidden layers with 16-32-64 nodes each layer, 16 batch
size, Adam optimizer and sigmoid activation function. The extracted results are demon-
strated in Table 3. The reason we developed machine learning algorithms for our dataset
is to compare the metrics of methodologies that have demonstrated efficient perfor-
mance on structure data.

Table 3. Comparison of results of FCM-PSO with traditional machine learning algorithms

Models Accuracy Loss Sensitivity Specificity  Precision
Clinical Data

FCM-PSO with  72.9+6.39  0.27+0.06 64.89+11.7  80.114£8.96 70.05+0.07

random weights

FCM-PSO with

suggested

weights 74.98+5.95  0.25+0.06  74.96+£7.29  74.6+15.34 75.01+0.04




Clinical Data and polar map Images

DeepFCM with

suggested

weights 77.95+£5.58  0.22+0.05 76.98+8.27  77.39+7.13 73.97+0.09
DeepFCM with

random weights  65.91+4.42  0.36+0.04 71.01+5.96  68.36+9.97 65.63+5.65
Bayes 75.45+5.57 0.24+0.05  81.26+5.29 69.54+£8.28 78.51+0.07

Random Forest 78.87+3.42 0.22+0.03  74.26+5.46 83.37+5.48 76.43+0.05
Decision Tree 74.13+4.23 0.26+0.04  72.34+6.14 75.82+6.14 73.43+0.05
Neural Network ~ 78.57+5.49 0.28+£0.02  78.08+6.7 79.28+6.16  73.5+0.09

Comparing the results provided in Table 3, we conclude that the proposed DeepFCM
model utilizing the weights suggested by experts outperforms the model that employed
the random values considering the CNN output from trained model. In this case, the
proposed DeepFCM model exceeded in terms of efficiency when utilizing historical
data and additional knowledge from experts.

In Table 4, we gather the range of values for every relationship between input and
output concept, that were i) suggested by nuclear experts, ii) produced from the Deep-
FCM learning approach with values suggested by experts, along with predicted proba-
bilities. The first column demonstrates the suggested weights from experts for the con-
nection of every input concept with the output, with the exception of some Nan values.
On this occasion, a random value could be selected from the range [-1, 1]. The second
column presents the produced weight for the interconnection between input and output
concepts for the FCM learning model, whose initial values are provided from the sug-
gested ranges displayed in the first column.

The weights produced from DeepFCM model utilizing experts’ values of weights
are close to the values suggested by experts, and do not present large deviation, with
contrast to those interconnections randomly initialized as Nan, in which large devia-
tions were observed.

Table 4. Presentation of extracted ranges for the relationship between input concepts and out-
put produced from model with random weights and from model that utilized experts’ opinions.

Suggested interconnections Weights Produced weights by DeepFCM
from experts
Sex>>Output [0.35-0.65] [0.49+0.09]
Age>>Output Nan [-0.35+0.39]
BMI>>Output [0.15-0.5] [0.3£0.11]
known CAD>>Output [0.5-0.85] [0.66+0.07]
previous AMI>>Output [0-0.3] [0.16+0.08]
previous PCI>>Qutput [0.15-0.5] [0.32+0.12]
previous CABG>>Output [0.15-0.5] [0.29+0.09]

previous STROKE>>Output [0.35-0.65] [0.47+0.1]
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Diabetes>>Output [0.5-0.85] [0.69+0.11]
Smoking>>Output [0.35-0.65] [0.49+0.07]
Hypertension>>Output [0.35-0.65] [0.48+0.1]
Dyslipidemia>>Output [0.35-0.65] [0.5140.1]
Angiopathy>>Output [0.35-0.65] [0.48+0.06]
Chronic Kidney Disease>>Output [0.15-0.5] [0.38+0.14]
Family History of CAD>>Output [0.15-0,5] [0.34+0.06]
Asymptomatic>>Output [-0.85 - -0.5] [-0.66+0.07]
Atypical symptoms>>Qutput [0.7-1] [0.83+0.08]
Angina like>>Output [0.5-0.85] [0.67+0.06]
Dyspnea on exertion>>Output [0.5-0.85] [0.6+0.08]
Incident of precordial pain>>Output [0.35-0.65] [0.67+0.11]
ECG>>Output Nan [-0.16+0.57]
Expert_Diagnosis_Binary>>Output [0.7-1] [0.89+0.07]
CNN output>>Output [0.5-0.85] [0.7+0.15]

4 Discussion

We propose a DeepFCM model for CAD diagnosis. It achieves high accuracy and also
exceeds traditional machine learning algorithms. Moreover, it utilizes historical data
or/and expert’s opinions, with prediction probabilities extracted from trained VGG-19.
Regarding the first model, the interconnections of concepts with the output CAD con-
cept were initialized randomly with numbers in the range [-1, 1]. Concerning results,
FCM is a transparent and explainable tool, since it produces interconnections between
every input concept and the output CAD concept, with meaningful influences among
them, which is a great advantage, in comparison to Random Forest, Bayes, Decision
Tree and Neural Networks that are characterized as black-boxes [14].

We experimented with different DeepFCM learning methods to determine the opti-
mal. For example, we developed FCM with random values from a spectrum [-1, 1] for
the initial values of interconnections and furthermore we did not utilize the prediction
probabilities from CNN to evaluate and DeepFCM performed better comparison with
the rest of the experiments. It is demonstrated that the doctor-in-the-loop approach
yields better results and makes the system more informative and explainable. In addi-
tion, the integration of a CNN for offering an extra input to our system benefits the
model, because it leverages the feature extraction capabilities of the CNNs in CAD
screening.

The developed code can be implemented producing results effortlessly providing
nuclear experts with an autonomous decision-making tool for patient’s health, regard-
ing CAD diagnosis.
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5 Conclusions

In this research study, the DeepFCM model achieved remarkable results, providing an
integral tool that can assist decisions in nuclear medicine. In future work, the authors
intend to implement state equations for FCM learning and obtain nuclear experts’ opin-
ions that entail certain conditions regarding patient’s characteristics. Furthermore, we
plan to extend our work by improving FCM’s performance with random values for
initial interconnections. Last but not least, we intent to insert to our proposed model
DeepFCM image data and perform image classification with the application of Fuzzy
Cognitive Maps, along with clinical data and prediction probabilities obtained from
image data and develop a hybrid method.

Acknowledgments

The research project was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.1.) under the "2nd Call for H.F.R.l. Research Projects to support
Faculty Members & Researchers" (Project Number: 3656).

References

1. Deep learning analysis of the myocardium in coronary CT angiography for identification of
patients with functionally significant coronary artery stenosis - PubMed, https://pub-
med.ncbi.nlm.nih.gov/29197253/, last accessed 2023/02/17.

2. Papageorgiou, E.l., Spyridonos, P.P., Glotsos, D.Th., Stylios, C.D., Ravazoula, P., Nikifo-
ridis, G.N., Groumpos, P.P.: Brain tumor characterization using the soft computing tech-
nique of fuzzy cognitive maps. Appl. Soft Comput. 8, 820-828 (2008).
https://doi.org/10.1016/j.as0c.2007.06.006.

3. Nasiriyan-Rad, H., Amirkhani, A., Naimi, A., Mohammadi, K.: Learning fuzzy cognitive
map with PSO algorithm for grading celiac disease. In: 2016 23rd Iranian Conference on
Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical En-
gineering (ICBME). pp. 341-346 (2016). https://doi.org/10.1109/ICBME.2016.7890984.

4. Papageorgiou, E.l., Kannappan, A.: Fuzzy cognitive map ensemble learning paradigm to
solve classification problems: Application to autism identification. Appl. Soft Comput. 12,
3798-3809 (2012). https://doi.org/10.1016/j.as0c.2012.03.064.

5. Papageorgiou, E.I., Papandrianos, N.I., Apostolopoulos, D.J., Vassilakos, P.J.: Fuzzy Cog-
nitive Map based decision support system for thyroid diagnosis management. In: 2008 IEEE
International Conference on Fuzzy Systems (IEEE World Congress on Computational In-
telligence). pp. 1204-1211 (2008). https://doi.org/10.1109/FUZZY.2008.4630524.

6. Carvajal, O., Melin, P., Miramontes, I., Prado-Arechiga, G.: Optimal design of a general
type-2 fuzzy classifier for the pulse level and its hardware implementation. Eng. Appl. Artif.
Intell. 97, 104069 (2021). https://doi.org/10.1016/j.engappai.2020.104069.



12

10.

11.

12.

13.

14.

15.

Guzman, J.C., Miramontes, I., Melin, P., Prado-Arechiga, G.: Optimal Genetic Design of
Type-1 and Interval Type-2 Fuzzy Systems for Blood Pressure Level Classification. Axi-
oms. 8, 8 (2019). https://doi.org/10.3390/axioms8010008.

Interval Type-2 Fuzzy Approach for Dynamic Parameter Adaptation in the Bird Swarm
Algorithm for the Optimization of Fuzzy Medical Classifier - Avalpmon Google,
https://www.google.com/search?g=Interval+Type-2+Fuzzy+Approach+for+Dynamic+Pa-
rameter+Adaptation+in+the+Bird+Swarm+Algorithm+for+the+Optimiza-
tion+of+Fuzzy+Medical+Classifier&og=Interval+Type-2+Fuzzy+Approach+for+Dy-
namic+Parameter+Adaptation+in+the+Bird+Swarm+Algorithm+for+the+Optimiza-
tion+of+Fuzzy+Medical+Classi-
fier&aqgs=chrome..69i57j69i59j69i61.311j0j4&sourceid=chrome&ie=UTF-8, last accessed
2023/03/31.

Hoyos, W., Aguilar, J., Toro, M.: A clinical decision-support system for dengue based on
fuzzy cognitive maps. Health Care Manag. Sci. 25, 666-681 (2022).
https://doi.org/10.1007/s10729-022-09611-6.

Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65-75 (1986).
https://doi.org/10.1016/S0020-7373(86)80040-2.

Apostolopoulos, 1.D., Groumpos, P.P.: Non - invasive modelling methodology for the di-
agnosis of coronary artery disease using fuzzy cognitive maps. Comput. Methods Biomech.
Biomed. Engin. 23, 879-887 (2020). https://doi.org/10.1080/10255842.2020.1768534.
Sovatzidi, G., Vasilakakis, M.D., lakovidis, D.K.: IF3: An Interpretable Feature Fusion
Framework for Lesion Risk Assessment Based on Auto-constructed Fuzzy Cognitive Maps.
In: Ali, S., van der Sommen, F., Papiez, B.W., van Eijnatten, M., Jin, Y., and Kolenbrander,
I. (eds.) Cancer Prevention Through Early Detection. pp. 77-86. Springer Nature Switzer-
land, Cham (2022). https://doi.org/10.1007/978-3-031-17979-2_8.

Wang, D., Tan, D, Liu, L.: Particle swarm optimization algorithm: an overview. Soft Com-
put. 22, 387-408 (2018). https://doi.org/10.1007/s00500-016-2474-6.

Papandrianos, N.I., Apostolopoulos, 1.D., Feleki, A., Apostolopoulos, D.J., Papageorgiou,
E.l.: Deep learning exploration for SPECT MPI polar map images classification in coronary
artery disease. Ann. Nucl. Med. 36, 823-833 (2022). https://doi.org/10.1007/s12149-022-
01762-4.

Accuracy, Precision, and Recall in Deep Learning | Paperspace Blog, https://blog.paper-
space.com/deep-learning-metrics-precision-recall-accuracy/, last accessed 2021/07/25.



