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Abstract. Coronary artery disease (CAD) is the primary cause of death and 

chronic disability, among cardiovascular conditions worldwide. Its diagnosis is 

challenging and cost-effective. In this research work, Fuzzy Cognitive Maps with 

Particle Swarm optimization (called FCM-PSO) were used for CAD classifica-

tion (healthy and diseased).. In particular, a new DeepFCM framework, which 

integrates image and clinical data of the patients is proposed by employing the 

FCM-PSO method enhanced by experts’ knowledge along with an efficient at-

tention Convolutional Neural Network to improve diagnosis. The proposed 

method utilizes 571 CAD instances and achieved 77.95±5.58 accuracy, 

0.22±0.05 loss, 76.98±8.27 sensitivity, 77.39±7.13 specificity and 73.97±0.09 

precision, implementing a 10-fold cross validation process. The results extracted 

from the proposed model demonstrate the model’s efficiency which outperforms 

traditional machine learning algorithms. An essential asset of the proposed Deep-

FCM framework is the explainability as it offers nuclear physicians meaningful 

causal relationships between clinical symptoms and the diagnosis, helping them 

in decision-making regarding CAD. 

Keywords: Fuzzy Cognitive Maps, Particle Swarm Optimization, Classification, 

Coronary artery disease. 

1 Introduction 

Obstructive Coronary Artery Disease (CAD) is the most frequent type of cardiovascular 

disease, and it occurs when at least one of the coronary arteries are blocked, which leads 

to the reduction of blood inserting into the myocardium, causing stenosis. CAD is a 

life-threatening disease. It requires early appropriate diagnosis and treatment to im-

prove a patient’s condition and deflect death. Consequently, it is crucial to detect the 

existence of stenosis and the danger of its advancement [1].  

 With respect to the previous studies regarding Fuzzy Cognitive Map (FCM) imple-

mentation for medical data classification, the following research studies have been an-

alyzed. Papageorgiou et al in [2] developed a FCM model for brain tumor characteri-

zation utilizing the Activation Hebbian Algorithm, which utilizes initial experts’ 
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knowledge. The proposed model defines the degree of tumor abnormality, with only 

qualitative data as input. The model achieved 90.26% and 93.22% accuracy for brain 

tumor of low-grade and high-grade, accordingly and outperformed other intelligent 

techniques. Nasiriyan-Rad et al. in [3] presented a new method for grading Celiac dis-

ease (CD) with the combination of FCM and Support Vector Machine (SVM), with  

Particle Swarm Optimization (PSO) for enhancing the results. The performance of the 

proposed model was compared against the fuzzy rule-based Bayesian Networks (BN), 

where FCM-SVM model performed better achieving accuracy of 87%, 86% and 8% 

for each of three possible CD grades. Papageorgiou et al. in [4] introduced a new ap-

proach for FCM learning, utilizing ensemble-based learning approaches, which is based 

on non-linear Hebbian learning (NHL) for autism classification. The proposed model 

outperformed in contrast to FCM models that support their training procedure on 

Hebbian-based learning algorithms, with 89.41% accuracy while data driven NHL ex-

tracted 79.62%. Papageorgiou et al. in [5] presented FCMs for decision making in med-

ical domain, regarding thyroid diagnosis. The developed model achieved 89.80% ac-

curacy, regarding thyroid diagnosis. Carvajal et al in [6] aimed to develop a General 

Type (GT2) Fuzzy Logic (FL) classifier for pulse levels and optimize the general type-

2 membership functions parameters with the usage of Ant Lion Optimizer a metaheu-

ristic algorithm. The dataset includes 4240 patients acquired from the Framingham Da-

tabase and the hold out method is applied for the splitting of training and testing data. 

The GT2 FL classifier outperforms with average 99% accuracy for all experiments than 

interval-type-2 and type-1 fuzzy classifiers. Guzman et al in [7] aimed to develop a 

type-2 fuzzy system with triangular membership  for the classification of blood pres-

sure. The model attained 99.408% classification rate with type-2 fuzzy system utilizing 

triangular membership functions, where the type-1 classifier in previous study reached 

98%. Miramontes et al in [8] proposed a dynamic parameter adaptation with the inclu-

sion of the Bird Swarm algorithm (BSA) based on type-2 fuzzy systems. The proposed 

model achieved 97% classification accuracy and performed better compared to other 

methodologies. Hoyos et al in [9] proposed a clinical decision-support system based on 

Fuzzy Cognitive Maps architecture to classify patients that suffer from dengue. The 

developed model compared to other machine learning approaches and outperformed 

with 89.4% accuracy, while providing analysis of factors and explainability of decision 

of results. 

The contribution of this research is the development of a DeepFCM model utilizing 

Particle Swarm as an optimization technique for the provision of an automatic classifi-

cation tool that diagnoses CAD non-invasively and is based on both image and clinical 

risk factors. The classification problem is two-class, and it is devoted to the presence 

of CAD. The added value of this research is the proposal of an explainable tool that 

provides interpretability, which is an important factor in sensitive areas like healthcare, 

compared to machine learning approaches, where they are known as “black boxes”. 

The FCM presents analysis of relationships among features, where we can detect signs 

of CAD before the clinical diagnosis and recommend precautionary treatment to avoid 

complications and mortality [9].The results show our model’s high consistency and ro-

bustness, denoting that the proposed model can be adjusted in nuclear medicine domain 

and assist in decision making, as far as CAD diagnosis is concerned. 



3 

2 Material and Methods 

2.1 CAD dataset  

The corresponding dataset consists of 571 instances, where 248 cases are classified as 

pathological and 323 are as normal. Of the total dataset,  79.68% were male and regard-

ing patients’ age, they ranged from 32 to 90. Concerning Body Mass Index (BMI) is in 

spectrum of 16.53, which falls into underweight category to 87.2 which is categorized 

as extremely obese. 

 The patients underwent gated-SPECT-MPI (Single Photon Computed Tomography- 

Myocardial Perfusion Imaging) and Invasive Coronary Angiography (ICA) after 60 

days of MPI procedure. This process shapes a patient’s status regarding the CAD diag-

nosis and the result is utilized as ground truth in our study. 

 The dataset of this study was obtained from the Clinical Sector of the Department of 

Nuclear Medicine of the University Hospital of Patras from 16/2/2018 to 28/02/2022. 

Dataset acquisition is authorized by the ethical committee of University Hospital of 

Patras. All patients were given authorization for their results to be obtained anony-

mously. The performed methods agree with the Declaration of Helsinki. 

The available dataset contains information about patient’s status like age, sex, BMI, 

and furthermore medical characteristics like diabetes, previous CAD condition, etc. The 

features used as input by FCM classification model, after binary normalization are 

twenty-two: (1) Sex, (2) Age, (3) BMI, (4) known CAD, (5) previous AMI,  (6) pre-

vious PCI, (7) previous CABG, (8) previous STROKE, (9) Diabetes, (10) Smoking, 

(11) Hypertension, (12) Dyslipidemia, (13) Peripheral Angiopathy, (14) Chronic Kid-

ney Disease, (15) Family History of CAD, (16) Asymptomatic,(17) Atypical Symp-

toms, (18) Angina-like, (19) Dyspnea on Exertion, (20) Incident of precordial pain, (21) 

ECG, and (22) Preliminary Expert Diagnosis. 

Furthermore, polar map images were used for CAD diagnosis, implementing an ef-

ficient VGG method, which provides an output, called CNN prediction. 

 

2.2 Methodology 

2.2.1 Fuzzy Cognitive Maps 

 

FCMs were introduced by Kosko [10] in 1986 and they are an advanced version of 

cognitive maps. Cognitive maps contain a typical system with set of nodes/concepts 

and connections between the concepts that describe cause and effect relationships. In 

the interest of overcoming the binary logic, Kosko developed FCMs, evolved versions 

of CMs, which consist of fuzzy rules for the calculation of concepts. The FCM archi-

tecture which is similar to an Artificial Neural Network, is a soft computing tool that 

mimics the human process of making decisions [11] [2]. FCM utilizes all the accessible 

knowledge and translates it in the form of concepts and interconnections between them. 

Concepts represent the characteristics/states of the examined system whereas intercon-

nections denote the cause-effect relationships with the rest of the concepts. Whether an 

interconnection has positive or negative value depends on the kind of connection. More 
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specifically, the interconnections between the concepts are the weighted links of the 

FCM and are in the range [-1, 1] [2] [3].  

In functional terms, FCM involves a set of concepts and a weight matrix. With ref-

erence to the links between the concepts, they display the direction and the effect of 

each node with the rest of the nodes. The connection can be positive or negative or have 

zero value. The construction of an FCM involves the definition of concepts and the 

equation of calculating the future values of concepts according to historical data. The 

fundamental equation for computing FCM concepts is eq. (1). To normalize the pre-

dicted value of concepts into a specific range, a transfer function is used. Generally, the 

sigmoid, or the trivalent function is preferred.  

 𝐴𝑖
(𝐾+1)

= 𝑓(𝐴𝑖
(𝐾)

+ ∑ 𝑤𝑖𝑗𝐴𝑗
(𝐾)𝑁

𝑖,𝑗 ) (1) 

where, 𝐴𝑖
(𝐾+1)

  is the value of the concept iteration (k+1) and 𝐴𝑗
(𝐾)

  is the concept at the 

iteration k and f is the sigmoid function.  

The strength of FCMs in general is that they consider the last state of each concept 

to calculate the future value. Regarding FCM learning, it is based on the construction 

of a weight matrix, utilizing unsupervised techniques with Hebbian adaptation, super-

vised with the inclusion of evolutionary algorithms and gradient methods. Well-known 

methods of FCM learning using historical data are RCGA and PSO. 

 

2.2.2 Design of FCM model using experts’ knowledge 

 

The FCM model consists of 23 concepts which are clinical features, with one output 

regarding CAD presence, which consists of two classes, pathological and normal. The 

22 input features indicate personal characteristics and clinical symptoms of patient sta-

tus.  All concepts’ values have value 0 or 1, depending on whether they suffer from 

each disease, with the exception of Age and BMI, where their values are normalized 

and their values are rescaled into the spectrum of [0,1]. Nuclear Experts assigned lin-

guistic values (represented by fuzzy sets) on the interconnections between inputs and 

output concepts. Table 1 gathers the fuzzy relationships among some of the most influ-

ential concepts with respect to the output. In particular, the following fuzzy sets were 

defined: very weak (VW), weak (W), medium (M), strong (S) and very strong (VS). 

For each linguistic value we assigned a specific range of values as it is reported in the 

literature [12], in order to perform FCM learning considering the respective ranges. For 

the fuzzy sets Very Weak (VW) and Weak (W) we determined the ranges to be [0 - 0.3] 

and [0.15 - 0.5] accordingly. Also, for Strong (S) and Very Strong (VS) we assigned 

the values to be randomly selected from [0.5 – 0.85] and [0.7 – 1] accordingly. Con-

cerning the negative linguistic values, we adjusted the provided values according to the 

positive ones. For the rest of the relationships, where no experts’ knowledge is pro-

vided, they take random values within the range [-1, 1]. 

Table 1. Presentation of extracted ranges for the relationship between input concepts with input 

concepts and with output obtained from nuclear experts. 

Relationships Assigned by experts Relationships Assigned by experts 
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Sex>>Output M Hypertension>>Output M 

  Dyslipidemia>>Output M 

AGE>>ECG W Angiopathy>>Output M 

BMI>>Output W Chronic Kidney Disease W 

Known CAD S Family History of 

CAD>>Output 

W 

previous 

AMI>>Output 

VW Asymptomatic>>Output  -S              

previous 

PCI>>Output 

W Atypical symp-

toms>>ECG 

VS 

previous 

CABG>>Output 

W Atypical Symp-

toms>>ECG 

M 

Previous 

Stroke>> 

M Angina Like>>Output S 

Diabetes>>Out-

put 

S Dyspnea on exer-

tion>>Output 

M 

Smoking>>Out-

put 

M Incident of precordial 

pain>>Output 

M 

  Expert_Diagnosis_Bi-

nary>>Output 

VS 

 

2.2.3 Learning FCM with Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) [13] is an optimization methodology that was in-

troduced in 1995 [3]. PSO utilizes a small number of parameters [3].  Regarding FCM 

learning, PSO is applied for the adjustment and calculation of relationships among the 

concepts. The definition of weight matrix, which consists of the relationships among 

all concepts is a crucial step and determines FCM’s performance. The ideal state of the 

interconnections with output concepts is to rely within the suggested linguistic values 

provided by experts and also the produced weight matrix to be in a steady state. In 

general, PSO is utilized for the minimization of objective function by implementing the 

following steps. Initially a swarm of particles is being generated, where their values of 

position and velocities are assigned randomly and are evaluated from the objective 

function. The produced weight matrix of every particle is evaluated and if produces 

better results than the rest particles, velocity and position are updated. The weight ma-

trix that globally minimizes the objective function of the corresponding particle is the 

winner particle [14]. Applying PSO to FCM learning improves FCM’s performance 

and intensifies FCM ability to classify correctly. The application of PSO improves the 

FCM’s ability to adjust the weight matrix correctly with optimization techniques, and 

as a result, FCM will not be supported only on historical data and bias related to bias 

will be avoided. 

 

2.2.4 DeepFCM 

In our model we added input predictions from image data representing CAD cases, 

to improve FCM’s performance. For this reason, we trained an attention-based VGG19 

network with the Polar Map images. This modified version includes attention blocks 

and branch-diverging (BD) paths to improve performance. The attention blocks aim to 
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focus on important image regions during feature extraction by multiplying the features 

with a weight mask that highlights regions of interest. This is achieved by creating a 

small CNN that takes the features as input and outputs a mask that is then used to weigh 

the original features. The BD paths, on the other hand, aim to capture more diverse 

features by creating multiple branches that diverge from the main CNN path and then 

recombine the features later in the network. This helps the model to learn more complex 

patterns and improves its generalization capabilities. Finally, the model is trained to 

classify images into different categories using the categorical cross-entropy loss func-

tion and the Adam optimizer. 

After making predictions on new images, the model's outputs are supplied to the 

FCM model. In this context, the FCM uses the predicted probabilities as input, along 

with clinical data, to make the prediction. By combining both imaging and clinical data, 

this approach provides a comprehensive and integrated approach to diagnosis, poten-

tially improving accuracy and reducing the need for invasive tests. 

Combining both predicted probabilities and clinical data, our proposed model named 

DeepFCM utilizes FCM methodologies and PSO as an optimization tool and Deep 

learning capabilities to correctly classify CAD cases. DeepFCM is an explainable 

method providing interpretability, clarification, and transparency of results to reduce 

complexity and scalability of other methods. 

 

 

2.2.5 Methodological framework 

 

This study aims to implement an FCM model, where PSO is applied as optimization 

technique with the usage of clinical and image data to classify CAD instances into 

pathological and normal and offer an automatic decision-making tool to nuclear medi-

cine experts. In order to conclude to the final structure of our model a thorough explo-

ration has been conducted with different techniques and various approaches for the in-

itialization of weight matrix and for the overall methodology. Our proposed model 

DeepFCM has demonstrated remarkable performance and impressive capabilities, 

while providing interpretability and explainability. 

With the acquired clinical data and prediction probabilities a transformed dataset has 

been generated. Data preprocessing techniques are applied for the normalization of val-

ues. For the stability and generability of results 10-fold cross validation is performed to 

the corresponding dataset. FCM utilized PSO as an optimization technique since its 

results are efficient with respect to??. With the application of PSO, along with the sug-

gested linguistic values obtained from nuclear experts, the optimal weight matrix has 

been attained, which consists the produced interconnections among input-input and in-

put-output concepts and the training procedure has been concluded. Regarding the test-

ing dataset, the produced weight matrix is utilized and the predicted values from the 

DeepFCM framework are compared with the actual values of the output of the testing 

for the comparison metrics to be computed. 

In Figure 1, we demonstrate the total process of our proposed methodological frame-

work. The developed DeepFCM model is provided on GitHub 

[https://github.com/AnnaFeleki/FCM-PSO-learning]. 
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Fig. 1. Proposed methodological framework of our proposed model DeepFCM. 

3 Results 

To conclude to the proposed architecture, various experiments were performed, and a 

comparison was conducted with different approaches regarding initial values for weight 

matrices. For comparison purposes, traditional machine learning algorithms were also 

applied to the provide dataset to evaluate each model’s metrics. In all experiments 10-

fold cross validation was performed, to confirm its consistency. 

For model evaluation and performance testing, the selected metrics are accuracy, 

loss, sensitivity, specificity, and precision. Accuracy is the fraction between the correct 

instances with all instances. A small loss is desirable denoting a less huge deviation in 

predicted results, compared to actual values [14]. Sensitivity and specificity represent 

the percentage of true positives and true negatives, respectively [14]. Precision indi-

cates the ratio of the number of true positives to the total number of positive predictions 

[15]. 

We followed the inspection of the equilibrium point's exact position, where the FCM 

presented a steady state by experimenting with different epochs. The epochs tested are 

in the range 15 to 120. The results regarding accuracy and loss for the examined number 

of epochs are depicted in Figure 2. It is observed that the best value for the epochs and 

the equilibrium point for the proposed FCM is 35, which is achieved in the position of 

the highest accuracy and the lowest loss. 
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Figure 2. Performance of proposed model with different epochs, regarding (a) Accuracy (b) 

Loss 

The values of the performance metrics for the proposed FCM model, for each run, are 

illustrated in Table 3. The spectrum of the initial interconnections of concepts with the 

output was given by experts. The proposed ranges was inserted in the code while the 

weights matrices were initialized with the corresponding spectrum for each concept. 

The results concerning the most robust metrics were extracted after 10-fold cross vali-

dation is applied. It is concluded that the FCM model achieved sufficient performance, 

in terms of accuracy and sensitivity.  For comparison reasons, the previous experiment 

was repeated, but this time, with randomly produced relationship between the input and 

output concepts, within the range [-1, 1]. The produced values of the same metrics are 

presented in Table 3. Additionally, for a further in-depth evaluation of the proposed 

model a comparative analysis has been made between the proposed FCM and robust 

machine learning algorithms such as Bayes, Random Forest, Decision Tree and Neural 

Network in their default specifications. Regarding Neural network architecture we ex-

perimented with different network configurations, for example number of nodes, num-

ber of layers, optimization algorithms, and activation functions. The optimal parameters 

of the final model were 3 three hidden layers with 16-32-64 nodes each layer, 16 batch 

size, Adam optimizer and sigmoid activation function. The extracted results are demon-

strated in Table 3. The reason we developed machine learning algorithms for our dataset 

is to compare the metrics of methodologies that have demonstrated efficient perfor-

mance on structure data.  

Table 3. Comparison of results of FCM-PSO with traditional machine learning algorithms 

Models Accuracy Loss Sensitivity Specificity Precision 

Clinical Data 

FCM-PSO with 

random weights 

72.9 ± 6.39 0.27 ±0.06 64.89 ±11.7 80.11±8.96 70.05±0.07 

FCM-PSO with 

suggested 

weights 74.98±5.95 0.25±0.06 74.96±7.29 74.6±15.34 75.01±0.04 

(a) Accuracy (b) Loss 
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Clinical Data and polar map Images 

DeepFCM with 

suggested 

weights 77.95±5.58 0.22±0.05 76.98±8.27 77.39±7.13 73.97±0.09 

DeepFCM with 

random weights  65.91±4.42 0.36±0.04 71.01±5.96 68.36±9.97 65.63±5.65 

Bayes 75.45±5.57 0.24±0.05 81.26±5.29 69.54±8.28 78.51±0.07 

Random Forest 78.87±3.42 0.22±0.03 74.26±5.46 83.37±5.48 76.43±0.05 

Decision Tree 74.13±4.23 0.26±0.04 72.34±6.14 75.82±6.14 73.43±0.05 

Neural Network 

 

78.57±5.49 0.28±0.02 78.08±6.7 79.28±6.16 73.5±0.09 

Comparing the results provided in Table 3, we conclude that the proposed DeepFCM 

model utilizing the weights suggested by experts outperforms the model that employed 

the random values considering the CNN output from trained model. In this case, the 

proposed DeepFCM model exceeded in terms of efficiency when utilizing historical 

data and additional knowledge from experts. 

In Table 4, we gather the range of values for every relationship between input and 

output concept, that were i) suggested by nuclear experts, ii) produced from the Deep-

FCM learning approach with values suggested by experts, along with predicted proba-

bilities. The first column demonstrates the suggested weights from experts for the con-

nection of every input concept with the output, with the exception of some Nan values. 

On this occasion, a random value could be selected from the range [-1, 1]. The second 

column presents the produced weight for the interconnection between input and output 

concepts for the FCM learning model, whose initial values are provided from the sug-

gested ranges displayed in the first column. 

The weights produced from DeepFCM model utilizing experts’ values of weights 

are close to the values suggested by experts, and do not present large deviation, with 

contrast to those interconnections randomly initialized as Nan, in which large devia-

tions were observed.  

Table 4. Presentation of extracted ranges for the relationship between input concepts and out-

put produced from model with random weights and from model that utilized experts’ opinions. 

Suggested interconnections Weights 

from experts 

Produced weights by DeepFCM 

Sex>>Output [0.35-0.65] [0.49±0.09] 

Age>>Output Nan [-0.35±0.39] 

BMI>>Output [0.15-0.5] [0.3±0.11] 

known CAD>>Output [0.5-0.85] [0.66±0.07] 

previous AMI>>Output [0-0.3] [0.16±0.08] 

previous PCI>>Output [0.15-0.5] [0.32±0.12] 

previous CABG>>Output [0.15-0.5] [0.29±0.09] 

previous STROKE>>Output [0.35-0.65] [0.47±0.1] 
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Diabetes>>Output [0.5-0.85] [0.69±0.11] 

Smoking>>Output [0.35-0.65] [0.49±0.07] 

Hypertension>>Output [0.35-0.65] [0.48±0.1] 

Dyslipidemia>>Output [0.35-0.65] [0.51±0.1] 

Angiopathy>>Output [0.35-0.65] [0.48±0.06] 

Chronic Kidney Disease>>Output [0.15-0.5] [0.38±0.14] 

Family History of CAD>>Output [0.15-0,5] [0.34±0.06] 

Αsymptomatic>>Output [-0.85 - -0.5] [-0.66±0.07] 

Αtypical symptoms>>Output [0.7-1] [0.83±0.08] 

Angina like>>Output [0.5-0.85] [0.67±0.06] 

Dyspnea on exertion>>Output [0.5-0.85] [0.6±0.08] 

Incident of precordial pain>>Output [0.35-0.65] [0.67±0.11] 

ECG>>Output Nan [-0.16±0.57] 

Expert_Diagnosis_Binary>>Output [0.7-1] [0.89±0.07] 

CNN output>>Output [0.5-0.85] [0.7±0.15] 

4 Discussion 

We propose a DeepFCM model for CAD diagnosis. It achieves high accuracy and also 

exceeds traditional machine learning algorithms. Moreover, it utilizes historical data 

or/and expert’s opinions, with prediction probabilities extracted from trained VGG-19. 

Regarding the first model, the interconnections of concepts with the output CAD con-

cept were initialized randomly with numbers in the range [-1, 1]. Concerning results, 

FCM is a transparent and explainable tool, since it produces interconnections between 

every input concept and the output CAD concept, with meaningful influences among 

them, which is a great advantage, in comparison to Random Forest, Bayes, Decision 

Tree and Neural Networks that are characterized as black-boxes [14]. 

We experimented with different DeepFCM learning methods to determine the opti-

mal. For example, we developed FCM with random values from a spectrum [-1, 1] for 

the initial values of interconnections and furthermore we did not utilize the prediction 

probabilities from CNN to evaluate and DeepFCM performed better comparison with 

the rest of the experiments. It is demonstrated that the doctor-in-the-loop approach 

yields better results and makes the system more informative and explainable.  In addi-

tion, the integration of a CNN for offering an extra input to our system benefits the 

model, because it leverages the feature extraction capabilities of the CNNs in CAD 

screening. 

The developed code can be implemented producing results effortlessly providing 

nuclear experts with an autonomous decision-making tool for patient’s health, regard-

ing CAD diagnosis. 
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5 Conclusions 

In this research study, the DeepFCM model achieved remarkable results, providing an 

integral tool that can assist decisions in nuclear medicine. In future work, the authors 

intend to implement state equations for FCM learning and obtain nuclear experts’ opin-

ions that entail certain conditions regarding patient’s characteristics. Furthermore, we 

plan to extend our work by improving FCM’s performance with random values for 

initial interconnections. Last but not least, we intent to insert to our proposed model 

DeepFCM image data and perform image classification with the application of Fuzzy 

Cognitive Maps, along with clinical data and prediction probabilities obtained from 

image data and develop a hybrid method. 
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